Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Взаимодействие лазера с веществом.docx
Скачиваний:
5
Добавлен:
17.07.2019
Размер:
112.99 Кб
Скачать

Основные линейные эффекты,вызываемые лазерным излучением в физике,биологии,химии.

Содержание

Введение……………………………………………………………………………………3

Уравнение Максвелла……………………………………………………………………..5

Особенности лазерного излучения……………………………………………………...11

Эффекты взаимодействия лазерного излучения с веществом………………………...14

Заключение……...……………………………………………………………………..…25

Список использованной литературы……………………………………………………26

Введение

Ла́зер (англ. laser, акроним от англ. light amplification by stimulated emission of radiation - усиление света посредством вынужденного излучения), опти́ческий ква́нтовый генера́тор - устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения. Физической основой работы лазера служит квантовомеханическое явление вынужденного (индуцированного) излучения. Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим предельно больших пиковых мощностей. В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Существует большое количество видов лазеров, использующих в качестве рабочей среды все агрегатные состояния вещества. Некоторые типы лазеров, например лазеры на растворах красителей или полихроматические твердотельные лазеры, могут генерировать целый набор частот в широком спектральном диапазоне. Габариты лазеров разнятся от микроскопических для ряда полупроводниковых лазеров до размеров футбольного поля для некоторых лазеров на неодимовом стекле. Уникальные свойства излучения лазеров позволили использовать их в различных отраслях науки и техники, а также в быту, начиная с чтения и записи компакт-дисков и заканчивая исследованиями в области управляемого термоядерного синтеза. В 60-е годы прошлого века сформировалась «тепловая модель» взаимодействия лазерного излучения с поглощающими материалами. Эта модель позволила успешно описать теплопроводное распространение тепла, плавление, модификацию структуры вещества, стимулированную нагреванием, испарение, разлет продуктов разрушения. Выводы тепловой модели хорошо совпадают с результатами различных экспериментов. Световые волны, в том числе и лазерное излучение, это электромагнитные волны определенного спектрального диапазона. Мы будем рассматривать оптический диапазон длин волн. К оптическому диапазону принадлежит инфракрасное (ИК) излучение, видимый свет, ультрафиолетовое (УФ) излучение и рентгеновское излучение низкой частоты. Именно в оптическом диапазоне работают широко применяемые в лазерных технологиях источники. Создание лазеров – источников мощного когерентного света – стимулировало появление не только целого ряда новых направлений в физике, химии, биологии и других науках, но и разработку большого количества новых технологий в микроэлектронике и обработке материалов, хранении, обработке, передаче информации, в приборостроении, связи, медицине, военной технике и контроле материалов, в точных измерениях, в науках о жизни, в искусстве и т.д. Ключевой дисциплиной, стоящей на стыке собственно лазерной физики и техники со всевозможными лазерными технологиями является взаимодействие лазерного излучения с веществом. При этом разнообразие «лазерных приложений», когда просто трудно назвать область человеческой деятельности, где бы они ни применялись, привело к тому, что и взаимодействие лазерного излучения с веществом имеет множество направлений и оттенков.

Уравнения Максвелла

Большинство оптических явлений, происходящих при взаимодействии лазерного излучения с веществом и используемых в лазерных технологиях, можетбыть качественно и количественно объяснено на основе классического подхода. При классическом подходе электромагнитное поле характеризуется четырьмя основными векторными величинами: напряженностью электрического поля E, электрической индукцией D, напряженностью магнитного поля H и магнитной индукцией B. При расчете электромагнитного поля определяют зависимости этих векторов от пространственных координат и времени. Основными уравнениями, описывающими распространение электромагнитных полей, из которых вытекает и существование электромагнитных волн, являются уравнения Максвелла.

Первое уравнение Максвелла имеет вид:

(1,a)

то есть циркуляция вектора напряжённости магнитного поля вдоль замкнутого контура L (сумма скалярных произведений вектора Н в данной точке контура на бесконечно малый отрезок dl контура) определяется полным током через произвольную поверхность S, ограниченную данным контуром. Здесь jn — проекция плотности тока проводимости j на нормаль к бесконечно малой площадке ds, являющейся частью поверхности S, — проекция плотности тока смещения на ту же нормаль, а с —постоянная, равная скорости распространения электромагнитных взаимодействий в вакууме.

Второе уравнение Максвелла является математической формулировкой закона электромагнитной индукции Фарадея (см. Индукция электромагнитная) записывается в виде:

(1,б)

то есть циркуляция вектора напряжённости электрического поля вдоль замкнутого контура L (эдс индукции) определяется скоростью изменения потока вектора магнитной индукции через поверхность S, ограниченную данным контуром. Здесь Bn — проекция на нормаль к площадке ds вектора магнитной индукции В; знак минус соответствует Ленца правилу для направления индукционного тока.

Третье уравнение Максвелла выражает опытные данные об отсутствии магнитных зарядов, аналогичных электрическим (магнитное поле порождается только токами):

(1,в)

то есть поток вектора магнитной индукции через произвольную замкнутую поверхность S равен нулю.

Четвёртое уравнение Максвелла (обычно называемое Гаусса теоремой) представляет собой обобщение закона взаимодействия неподвижных электрических зарядов — Кулона закона:

(1,г)

то есть поток вектора электрической индукции через произвольную замкнутую поверхность S определяется электрическим зарядом, находящимся внутри этой поверхности (в объёме V, ограниченном данной поверхностью).

Если считать, что векторы электромагнитного поля (Е, В, D, Н) являются непрерывными функциями координат, то, рассматривая циркуляцию векторов Н и Е по бесконечно малым контурам и потоки векторов B и D через поверхности, ограничивающие бесконечно малые объёмы, можно от интегральных соотношений (1, а — г) перейти к системе дифференциальных уравнений, справедливых в каждой точке пространства, то есть получить дифференциальную формуМаксвелла уравнения (обычно более удобную для решения различных задач):

rot ,

rot , (2)

div ,

div .

Здесь rot и div — дифференциальные операторы ротор и дивергенция, действующие на векторы Н, Е, B и D. Физический смысл уравнений (2) тот же, что и уравнений (1). уравнения Максвелла в форме (1) или (2) не образуют полной замкнутой системы, позволяющей рассчитывать электромагнитные процессы при наличии материальной среды. Необходимо их дополнить соотношениями, связывающими векторы Е, Н, D, В и j, которые не являются независимыми. Связь между этими векторами определяется свойствами среды и её состоянием, причём D и j выражаются через Е, а B — через Н:

D = D (E), B = B (Н), j = j (E). (3)

Эти три уравнения называются уравнениями состояния, или материальными уравнениями; они описывают электромагнитные свойства среды и для каждой конкретной среды имеют определённую форму. В вакууме D º Е и B º Н. Совокупность уравнений поля (2) и уравнений состояния (3) образуют полную систему уравнений.

Макроскопические Максвелла уравнения описывают среду феноменологически, не рассматривая сложного механизма взаимодействия электромагнитного поля с заряженными частицами среды. Максвелла уравнения могут быть получены из Лоренца— Максвелла уравнений для микроскопических полей и определённых представлений о строении вещества путём усреднения микрополей по малым пространственно-временным интервалам. Таким способом получаются как основные уравнения поля (2), так и конкретная форма уравнений состояния (3), причём вид уравнений поля не зависит от свойств среды.

Уравнения состояния в общем случае очень сложны, так как векторы D, B и j в данной точке пространства в данный момент времени могут зависеть от полей Е и Н во всех точках среды во все предшествующие моменты времени. В некоторых средах векторы D и B могут быть отличными от нуля при Е и H равных нулю (сегнетоэлектрики и ферромагнетики). Однако для большинства изотропных сред, вплоть до весьма значительных полей, уравнения состояния имеют простую линейную форму:

D = eE, B = mH, j = sE + jcтр. (4)

Здесь e (x, у, z) — диэлектрическая проницаемость, а m (x, у, z) — магнитная проницаемость среды, характеризующие соответственно её электрические и магнитные свойства (в выбранной системе единиц для вакуума e = m = 1); величина s(x, у, z) называется удельной электропроводностью; jcтр — плотность так называемых сторонних токов, то есть токов, поддерживаемых любыми силами, кроме сил электрического поля (например, магнитным полем, диффузией и т. д.). В феноменологической теории Максвелла макроскопические характеристики электромагнитных свойств среды e, m и s должны быть найдены экспериментально. В микроскопической теории Лоренца — Максвелла они могут быть рассчитаны.

Проницаемости e и m фактически определяют тот вклад в электромагнитное поле, который вносят так называемые связанные заряды, входящие в состав электрически нейтральных атомов и молекул вещества. Экспериментальное определение e, m, s позволяет рассчитывать электромагнитное поле в среде, не решая трудную вспомогательную задачу о распределении связанных зарядов и соответствующих им токов в веществе. Плотность заряда r и плотность тока jв уравнения Максвелла — это плотности свободных зарядов и токов, причём вспомогательные векторы Н и D вводятся так, чтобы циркуляция вектора Н определялась только движением свободных зарядов, а поток вектора D — плотностью распределения этих зарядов в пространстве.

Если электромагнитное поле рассматривается в двух граничащих средах, то на поверхности их раздела векторы поля могут претерпевать разрывы (скачки); в этом случае уравнения (2) должны быть дополнены граничными условиями:

[nH]2 - [nH]1 = ,

[nE]2 - [nE]1 = 0, (5)

(nD)2 - (nD)1 = 4ps,

(nB)2 - (nB)1 = 0.

Здесь jпов и s — плотности поверхностных тока и заряда, квадратные и круглые скобки — соответственно векторное и скалярное произведения векторов, n — единичный вектор нормали к поверхности раздела в направлении от первой среды ко второй, а индексы относятся к разным сторонам границы раздела.

Основные уравнения для поля (2) линейны, уравнения же состояния (3) могут быть и нелинейными. Обычно нелинейные эффекты обнаруживаются в достаточно сильных полях. В линейных средах [удовлетворяющих соотношениям (4)] и, в частности, в вакууме Максвелла уравнения линейны и, таким образом, оказывается справедливым суперпозиции принцип: при наложении полей они не оказывают влияния друг на друга.

Из Максвелла уравнения вытекает ряд законов сохранения. В частности, из уравнений (1,а) и (1, г) можно получить соотношение (так называемое уравнение непрерывности): , (6)

представляющее собой закон сохранения электрического заряда: полный ток, протекающий за единицу времени через любую замкнутую поверхность S, равен изменению заряда внутри объёма V, ограниченного этой поверхностью. Если ток через поверхность отсутствует, то заряд в объёме остаётся неизменным.

Из уравнения Максвелла следует, что электромагнитное поле обладает энергией и импульсом (количеством движения). Плотность энергии w (энергии единицы объёма поля) равна:

, (7)

Электромагнитная энергия может перемещаться в пространстве. Плотность потока энергии определяется так называемым вектором Пойнтинга

. (8)

Направление вектора Пойнтинга перпендикулярно как Е, так и Н и совпадает с направлением распространения электромагнитной энергии, а его величина равна энергии, переносимой в единицу времени через единицу поверхности, перпендикулярной к вектору П. Если не происходит превращений электромагнитной энергии в другие формы, то, согласно Максвелла уравнения, изменение энергии в некотором объёме за единицу времени равно потоку электромагнитной энергии через поверхность, ограничивающую этот объём. Если внутри объёма за счёт электромагнитной энергии выделяется тепло, то закон сохранения энергии записывается в форме:

(9)

где Q — количество теплоты, выделяемой в единицу времени.

Плотность импульса электромагнитного поля g (импульс единицы объёма поля) связана с плотностью потока энергии соотношением: . (10)

В рамках макроскопического подхода (теория Максвелла) механизм воздействия световой волны на вещество можно описать следующим образом. Падающая электромагнитная волна индуцирует в материале переменные токи, часть энергии которых преобразуется в джоулево тепло (поглощение), а часть расходуется на генерирование вторичных электромагнитных полей. При этом происходит распространение излучения в веществе путем непрерывного поглощения и переизлучения электромагнитных волн. В теории Лоренца (микроскопическое описание) переменное поле электромагнитной волны периодически ускоряет (раскачивает) многочисленные микроскопические заряды вещества. Ускоренные полем заряды теряют избыток полученной энергии либо путемпередачи ее своему ближайшему окружению, либо путем излучения новых электромагнитных волн. В первом случае происходит поглощение энергии, падающей на вещество электромагнитной волны, а во втором – распространение излучения в среде путем непрерывного поглощения и переизлучения электромагнитных волн заряженными частицами вещества.

Особенности лазерного излучения

Частота и монохроматичность

Первый квантовый генератор был создан на пучке молекул аммиака и давал излучение в диапазоне миллиметровых длин волн. Это излучение относится к радиодиапазону, и соответствующие устройства были названы мазерами. Лазеры, излучающие в оптическом и близком к нему инфракрасном и ультрафиолетовом диапазонах, были созданы позже. Существуют разные виды лазеров, которые по частоте перекрывают весь оптический, а также ближние инфракрасный и ультрафиолетовый диапазоны. Имеются первые результаты по генерации излучения в мягкой рентгеновской области спектра (рентгеновские лазеры). Для традиционных источников света, как естественных, например излучения Солнца или горящего костра, так и искусственных - электрических ламп накаливания или люминесцентных ламп, - характерен широкий спектр излучения. Свечение естественных источников и ламп накаливания определяется только температурой источника: чем температура выше, тем больше излучается энергии в коротковолновой области спектра и тем больше ширина этого спектра. Эти зависимости содержатся в знаменитой формуле Планка, описывающей излучение абсолютно черного тела, в которой впервые возникла постоянная, названная впоследствии постоянной Планка и определяющая масштаб квантовых свойств природы.

В отличие от таких источников лазерное излучение характеризуется очень узким спектром. Поэтому монохроматичность лазерного излучения, которая обусловлена целенаправленным использованием квантовых свойств света, является одним из его важнейших качеств. У современных твердотельных лазеров, работающих в импульсном режиме генерации, ширина спектра излучения составляет примерно 10 ГГц (это соответствует энергетической ширине спектра около 40 мкэВ), а специальные установки, используемые для получения стандартов длин волн оптического диапазона, обладают шириной спектра всего 10 Гц.