
- •Министерство общего и профессионального образования
- •1. Общие сведения об автоматах
- •1.1. Основные определения. Обозначения. Изображения
- •Способы описания и построения автоматов
- •1.3. Об операциях над автоматами, о законах и тождествах алгебры автоматов
- •1.4. Цифровые автоматы 1-го и 2-го рода, автоматы Мили и Мура
- •1.5. Классификация автоматов
- •1.6. Свойства и характеристики автоматов
- •Автоматы, выполняющие роль "0" и
- •1.8. Равенство, равносильность, эквивалентность, изоморфизм
- •1.9. Автоматные грамотность и культура
- •1.10. Значение теории автоматов в науке, технике и обществе
- •1.11. Краткая историческая справка о зарождении и развитии автоматов. Виды теорий автоматов
- •2. Способы задания (описания) цифровых автоматов
- •2.1. Начальные языки
- •2.1.1. Графическая схема алгоритма
- •2.1.2. Матричная схема алгоритма
- •2.1.3. Функциональная микропрограмма
- •2.1.4. Система формул переходов
- •2.2. Автоматные языки
- •2.2.1. Таблицы переходов, выходов
- •2.2.2. Матрицы переходов, выходов
- •2.2.3. Графы автоматов
- •3. Операции над цифровыми автоматами
- •3.1. Операции декомпозиции
- •3.1.1.Разбиение. Покрытие
- •3.1.2. Проверка разбиения, покрытия
- •3.2. Операции композиции
- •3.2.1. Последовательное соединение
- •3.2.2. Параллельное соединение
- •3.2.3. Соединение с обратной связью
- •3.3.Алгебраические операции
- •3.3.1.Объединение частей автомата
- •3.3.2. Настраиваемое объединение
- •3.3.3. Пересечение автоматов
- •3.3.4. Вычитание
- •3.3.5. Симметрическая разность
- •3.3.6. Дополнение
- •3.4.1.Проверка отношения
- •3.4.2. Проверка равенства
- •3.5. Операции упрощения цифрового автомата
- •3.5.1. Упрощение автомата за счет упрощения алгоритма
- •3.5.2. Упрощение цифрового автомата за счет тождеств
- •4. Законы и тождества алгебры автоматов
- •4.2. Тождества
- •5. Вопросы синтеза и анализа логических схем
- •5.1. Синтез логических схем
- •5.1.1. Синтез схем с одним выходом с оптимальным доопределением
- •Даются как без инверсии, так и с инверсией. Количество входов при этом удваивается. Однако число входов указывается без удвоения. Рассматриваемый дешифратор – это дешифратор на 4 входа, хотя их – 8.
- •5.1.3. Синтез схем с двумя выходами с сильной степенью связи
- •5.2. Анализ логических схем
- •5.2.1. Анализ логических схем с одним выходом
- •5.2.2. Анализ логических схем с двумя выходами
- •6.2. Операционные автоматы
- •6.3. Управляющие автоматы
- •6.3.1. Управляющие автоматы с жесткой логикой
- •6.3.2. Управляющие автоматы с программируемой логикой
- •6.4. Синтез управляющего автомата с жёсткой логикой
- •6.4.1. Этапы синтеза
- •6.4.1.1. Задание условий работы автомата
- •6.4.1.2. Отметки граф – схемы алгоритма
- •6.4.1.3. Графы автоматов
- •6.4.1.4. Cинтез запоминающей части
- •6.4.1.5. Синтез выходной части
- •6.4.1.6. Синтез входной части
- •7. Контроль и диагностирование работы цифровых автоматов
- •7.1. Контроль логических операций
- •7.2. Контроль арифметических операций
- •7.3. Контроль и диагностирование передач информации
- •8. Программное обеспечение преобразования цифровых автоматов
- •8.1. Подпрограммы алгебраических операций
- •8.1.1. Подпрограмма настраиваемого объединения
- •8.1.2. Подпрограмма операции пересечения
- •8.1.3. Подпрограмма операции вычитания
- •8.1.4. Подпрограмма операции симметрической разности
- •8.1.5. Подпрограмма операции дополнения
- •8.2. Подпрограммы операций проверки отношения
- •8.2.1.Подпрограмма проверки отношения
- •8.2.2. Подпрограмма проверки равенства
- •8.3.7. Подпрограмма 'закачки' мсар1 в неоднородную мса
- •Заключение
- •Приложение 1. Подпрограммы реализации операций
- •Приложение 2. Контрольные вопросы курса
- •Содержание
- •Александр Васильевич Триханов
- •Учебное пособие
2.1.2. Матричная схема алгоритма
Матричная схема алгоритма (МСА) представляет собой квадратную матрицу, строки которой соответствуют вершинам с выходами, столбцы - вершинам с входами. На пересечениях строк и столбцов записываются функции перехода. Такая функция представляет собой конъюнкцию кодов логических условий (логических переменных), переменная пишется без инверсии, если выход осуществляется по 1, в противном случае переменная пишется c инверсией. Функция перехода, равная 1, соответствует безусловному переходу.
Для указанного выше алгоритма МСА (МСА ННОД) представлена в табл.2
Таблица 2
МСА ННОД |
Y1 |
Y2 |
Y3 |
Y4 |
Y5 |
YK |
Y0, 4 |
__ __ Х1Х2 |
|
|
__ Х1Х2 |
Х1 |
|
Y1 |
|
1 |
|
|
|
|
Y2 |
|
|
1 |
|
|
|
Y3 |
|
|
|
1 |
|
|
Y5 |
|
|
|
|
|
1 |
Для МСА можно сформировать условия корректности:
в МСА не должно быть строки Yk;
в МСА не должно быть столбца Y0;
должны быть столбец Yk и строка Y0;
не должно быть пустых строк и столбцов;
на строке не должно быть одинаковых функций перехода;
на строке не должно быть сочетаний 1 и функций перехода через логические переменные;
в столбце могут быть одинаковые функции перехода;
на строке может быть только одна 1;
дизъюнкция всех функций переходов на строке должна быть равна единице;
10) разные строки с одинаковыми функциями переходов разрешается оформ-
лять в одной строке с указанием всех индексов вершин старта.
По МСА можно упрощать алгоритмы и, следовательно, автоматы.
2.1.3. Функциональная микропрограмма
Функциональная микропрограмма (ФМП) операции представляет собой программу в терминах микроопераций и осведомительных сигналов.
Применительно к Ф - языку [9] ФМП имеет следующую структуру:
заголовок с ключевым словом “АЛГОРИТМ”;
совокупность описаний с ключевыми словами “ВХОДНЫЕ”, ”ВНУТРЕННИЕ”, ”ВЫХОДНЫЕ”;
НАЧАЛО;
тело;
окончание с ключевым словом “КОНЕЦ”.
ФМП алгоритма ННОД можно представить в следующем виде:
АЛГОРИТМ ННОД;
ВХОДНЫЕ А(1:32),С(1:32);
ВНУТРЕННИЕ: А(1:32),С(1:32),НОД(1:32);
ВЫХОДНЫЕ: НОД(1:32);
НАЧАЛО
М3: ПЕРЕЙТИ ЕСЛИ Х1 ТО М1;
ПЕРЕЙТИ ЕСЛИ Х2 ТО М2;
Y1;
Y2;
Y3;
М2: Y4;
ПЕРЕЙТИ М3;
М1: Y5;
КОНЕЦ.
По ФМП, как и по предыдущим способам описания, можно организовать алгоритмический процесс. Пусть А=8, С=6, тогда данный процесс следует отразить следующим образом:
начало;
1 цикл: 8=6, Х1=0, 8>6, X2=1, М2, Y4, А=2, В=6, М3;
2 цикл: 2=6, Х1=0, 2>6, Х2=0, Y1, НОД=2, А=6, В=2, А=4, М3;
3 цикл: 4=2, Х1=0, 4>2, X2=1, M2, Y4, A=2, B=2, M3;
4 цикл: 2=2, Х1=1, М1;
НОД=2;
конец.
Для исходных чисел 8 и 6 действительно наибольший общий делитель равен 2.
Для ФМП существуют и условия корректности:
должен быть заголовок;
данной меткой может быть помечен только один оператор (одна строка);
в операторах перехода могут использоваться одинаковые метки;
строка после оператора безусловного перехода должна иметь метку;
на строке может быть записана только одна микрокоманда или один оператор перехода.