
- •§ 1. Испытания и события
- •§ 2. Виды случайных событий
- •§ 3. Классическое определение вероятности
- •§ 4. Основные формулы комбинаторики
- •§ 5. Примеры непосредственного вычисления вероятностей
- •§ 6. Относительная частота. Устойчивость относительной частоты
- •§ 7. Ограниченность классического определения вероятности. Статистическая вероятность
- •§ 8. Геометрические вероятности
- •§ 1. Теорема сложения вероятностей несовместных событий
- •§ 2. Полная группа событий
- •§ 3. Противоположные события
- •§ 4. Принцип практической невозможности маловероятных событий
- •§ 1. Произведение событий
- •§ 2. Условная вероятность
- •§ 3. Теорема умножения вероятностей
- •§ 4. Независимые события. Теорема умножения для независимых событий
- •§ 5. Вероятность появления хотя бы одного события
- •§ 1. Теорема сложения вероятностей совместных событий
- •§ 2. Формула полной вероятности
- •§ 3. Вероятность гипотез. Формулы Бейеса
- •§ 1. Формула Бернулли
- •§ 2. Локальная теорема Лапласа
- •§ 3. Интегральная теорема Лапласа
- •§ 4. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
- •§ 1. Случайная величина
- •§ 2. Дискретные и непрерывные случайные величины
- •§ 3. Закон распределения вероятностей дискретной случайной величины
- •§ 4. Биномиальное распределение
- •§ 5. Распределение Пуассона
- •§ 6. Простейший поток событий
- •§ 7. Геометрическое распределение
- •§ 8. Гипергеометрическое распределение
§ 2. Локальная теорема Лапласа
Выше была выведена формула Бернулли, позволяющая вычислить вероятность того, что событие появится в n испытаниях ровно k раз. При выводе мы предполагали, что вероятность появления события в каждом испытании постоянна. Легко видеть, что пользоваться формулой Бернулли при больших значениях п достаточно трудно, так как формула требует выполнения действий над громадными числами. Например, если п = 50, k = 30, p= 0,1, то для отыскания вероятности Р50 (30) надо иычислить выражение Р50(30)=50!/(30!20!)*(0,1)30*(0,9)20,где 50!=30414 093*1057, 30!=26525286*1025, 20!=24329020*1011. Правда, можно несколько упростить исчисления, пользуясь специальными таблицами логарифмов факториалов. Однако и этот путь остается громоздким и к тому же имеет существенный недостаток: таблицы содержат приближенные значения логарифмов, поэтому в процессе вычислений накапливаются погрешности; в итоге окончательный результат может значительно отличаться от истинного.
Естественно
возникает вопрос: нельзя ли вычислить
интересующую нас вероятность, не прибегая
к формуле Бернулли? Оказывается, можно.
Локальная теорема Лапласа и дает
асимптотическую (Функцию (x)называют
асимптотическим приближением функции
f(x),если
)
формулу, которая позволяет приближенно
найти вероятность появления события
ровно k
раз в п
испытаниях,
если число испытаний достаточно велико.
Заметим, что для частного случая, а именно для p= 1/2, асимптотическая формула была найдена в 1730 г. Муавром; в 1783 г. Лаплас обобщил формулу Муавра для произвольного р, отличного от 0 и 1. Поэтому теорему, о которой здесь идет речь, иногда называют теоремой Муавра—Лапласа.
Доказательство локальной теоремы Лапласа довольно cложно, поэтому мы приведем лишь формулировку теоремы и примеры, иллюстрирующие ее использование.
Локальная теорема Лапласа. Если вероятность р появления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероятность Рn (k) того, что событие А появится в п испытаниях ровно k раз, приближенно равна (тем точнее, чем больше п) значению функции
y=
при x=
(k-np)/
.
Имеются таблицы, в которых помещены значения функции
(х)=
,
соответствующие положительным значениям
аргумента х
(см. приложение
1). Для отрицательных значений аргумента
пользуются теми же таблицами, так как
функция
(х)
четна, т. е.
(-х)=
(х).
Итак, вероятность того, что событие А появится в п независимых испытаниях ровно k раз, приближенно равна
Pn(k)
где x = (k — np)/ .
Пример 1. Найти вероятность того, что событие А наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.
Решение. По условию, п = 400; k = 80; р = 0,2; q = 0,8. Воспользуемся асимптотической формулой Лапласа:
Р400(80)
Вычислим определяемое данными задачи значение х:
x=(k- пр)/ = (80 — 400• 0,2)/8 = 0.
По таблице приложения 1 находим (0) = 0,3989.
Искомая вероятность
P400(80) = (1/8) • 0,3989 = 0,04986.
Формула Бернулли приводит примерно к такому же результату (выкладки ввиду их громоздкости опущены):
P400(80) = 0,0498.
Пример 2. Вероятность поражения мишени стрелком при одном выстреле р = 0,75. Найти вероятность того, что при 10 выстрелах стрелок поразит мишень 8 раз.
Решение. По условию, n = 10; k = 8; р = 0,75; q = 0,25. Воспользуемся асимптотической формулой Лапласа:
Р10(8)
,
Вычислим определяемое данными задачи значение х:
x=
По таблице приложения 1 находим (0,36) =0,3739.
Искомая вероятность
Р10 (8) = 0,7301.0,3739 = 0,273.
Формула Бернулли приводит к иному результату, а именно P10(8) =0,282. Столь значительное расхождение ответов объясняется тем, что в настоящем примере п имеет малое значение (формула Лапласа дает достаточно хорошие приближения лишь при достаточно больших значениях п)
.