- •Бийский технологический институт (филиал)
- •Краткий курс биотехнологии
- •1 Природа и многообразие биотехнологических процессов
- •1.1 Введение
- •История развития биотехнологических процессов
- •1.3 Микроорганизмы, используемые в биотехнологических процессах
- •2 Производство белков одноклеточных организмов
- •2.1 Целесообразность использования микроорганизмов для
- •Производства белка
- •2.2 Использование дрожжей
- •2.3 Использование бактерий
- •2.4 Использование водорослей
- •2.5 Использование микроскопических грибов
- •3 Методы генетического конструирования
- •In vivo
- •3.1 Регуляция метаболизма в микробной клетке
- •3.2 Мутагенез и методы выделения мутантов
- •3.3 Плазмиды и конъюгация у бактерий
- •3.4 Фаги и трансдукция
- •3.5 Гибридизация эукариотических организмов
- •3.6 Слияние протопластов или фузия клеток
- •4 Технология производства метаболитов
- •4.1 Классификация продуктов биотехнологических производств
- •4.2 Общая схема биотехнологического производства продуктов микробного синтеза
- •4.3 Биотехнология получения первичных метаболитов
- •4.3.1 Производство аминокислот
- •4.3.2 Производство витаминов
- •4.3.3 Производство органических кислот
- •4.4 Биотехнология получения вторичных метаболитов
- •4.4.1 Получение антибиотиков
- •4.4.2 Получение промышленно важных стероидов
- •5 Биоиндустрия ферментов
- •5.1 Область применения и источники ферментов
- •5.2 Выбор штамма и условий культивирования
- •5.3 Технология культивирования микроорганизмов – продуцентов ферментов и выделение ферментов
- •5.4 Инженерная энзимология и ее задачи
- •6 Методы генетического конструирования
- •In vitro
- •6.1 Биотехнология рекомбинантных днк
- •6.2 Конструирование рекомбинантных днк
- •6.3 Идентификация клеток-реципиентов, содержащих рекомбинантные гены
- •6.4 Экспрессия чужеродных генов
- •6.4.1 Клонирование в бактериях
- •6.4.2 Клонирование в дрожжах
- •6.4.3 Клонирование в клетках животных
- •6.5 Использование генетической инженерии в животноводстве
- •6.6 Генная инженерия растений
- •7 Основы клеточной инженерии растений
- •7.1 История предмета
- •7.2 Методы и условия культивирования изолированных тканей и клеток растений
- •7.3 Дедифференцировка на основе каллусогенеза
- •7.4 Типы культур клеток и тканей
- •7.5 Общая характеристика каллусных клеток
- •7.6 Морфогенез в каллусных тканях как проявление тотипотентности растительной клетки
- •7.6.1 Дифференцировка каллусных тканей
- •7.6.2 Гистогенез (образование тканей)
- •7.6.3 Органогенез
- •7.6.4 Соматический эмбриогенез
- •7.7 Изолированные протопласты, их получение, культивирование, применение
- •7.8 Клональное микроразмножение и оздоровление растений
- •8 Экологическая биотехнология
- •8.1 Получение биогаза
- •8.2 Производство биоэтанола
- •8.3 Очистка сточных вод
- •8.3.1 Методы очистки сточных вод
- •8.3.1.1 Механические методы
- •8.3.1.2 Химические методы
- •8.3.1.3 Физико-химические методы
- •8.3.1.4 Биологический метод
- •8.3.2 Отстой сточных вод и его использование
- •9 Контрольные вопросы
- •Список литературы
- •Содержание
- •Краткий курс биотехнологии
4 Технология производства метаболитов
4.1 Классификация продуктов биотехнологических производств
Биотехнологические производства основаны на использовании жизнедеятельности микроорганизмов. Чтобы управлять микробиологическим процессом, необходимо знать физиологию применяемых культур микроорганизмов. Это позволит контролировать процессы, протекающие в клетке, условия культивирования и влияние основных факторов окружающей среды на направленный биосинтез.
Продуктами биотехнологических производств являются природные макромолекулы – белки, ферменты, полисахариды, полиэфиры, выделенные из клеток микроорганизмов, тканей и органов растений и животных.
где 1 – биомасса; 2 – продукт
Рисунок 2 – Динамика изменения биомассы и образования
первичных (А) и вторичных (Б) метаболитов в процессе роста
организма
По отношению к процессам роста низкомолекулярные продукты метаболизма живых клеток делятся на первичные и вторичные метаболиты.
Первичные метаболиты – это низкомолекулярные соединения (молекулярная масса менее 1500 Да), необходимые для роста микроорганизмов. Одни из них являются строительными блоками макромолекул, другие участвуют в синтезе коферментов. Среди наиболее важных для промышленности метаболитов можно выделить аминокислоты, органические кислоты, пуриновые и пиримидиновые нуклеотиды, растворители и витамины.
Вторичные метаболиты – это низкомолекулярные соединения, не требующиеся для роста в чистой культуре. Ко вторичным метаболитам относятся антибиотики, алкалоиды, гормоны роста растений и токсины.
4.2 Общая схема биотехнологического производства продуктов микробного синтеза
Процессы биотехнологических производств разнообразны, но все они имеют пять основных стадий:
1) приготовление питательной среды;
2) подготовка посевного материала;
3) культивирование микроорганизмов;
4) выделение целевого продукта;
5) очистка целевого продукта.
Принципиальная биотехнологическая схема производства продуктов микробного синтеза показана на рисунке 3.
Приготовление питательных сред. Среда должна отвечать двум основным требованиям. Во-первых, она должна быть полноценной для питания и недорогой. Углерод и азот в усвояемой форме требуются для биосинтеза белка; фосфор необходим для синтеза ДНК и АТФ; микроэлементы требуются для образования ферментов, также для нормальной жизнедеятельности нужны факторы роста и витамины. Во-вторых, среда должна быть стерильной, что достигается температурной, ультрафиолетовой, ультразвуковой и другими видами обработки.
П олучение посевного материала (инокулята) проводится по следующей схеме:
Качество полученного посевного материала контролируют путем микроскопирования.
Р исунок 3 – Принципиальная биотехнологическая схема
производства продуктов микробного синтеза
Культивирование (ферментация) представляет собой совокупность последовательных операций от внесения в заранее приготовленную питательную среду посевного материала до завершения процессов роста и биосинтеза вследствие исчерпания питательных веществ среды. Существует два основных типа ферментаций: получение биомассы микроорганизмов и получение метаболитов.