Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат флешка.docx
Скачиваний:
3
Добавлен:
12.07.2019
Размер:
69.71 Кб
Скачать

Министерство образования и науки Российской Федерации

Южно-Уральский государственный университет

Факультет «Автотракторный»

Кафедра «Эксплуатация транспортных средств»

Флеш-память. Принципы работы Реферат

По дисциплине «Информатика»

Проверил (доцент) _________/Абросимов Е.Н./ ________20__г. Автор работы студент группы Ат-161 _________/Матвеев А.П./ ________20__г. Реферат защищен с оценкой (прописью, цифрой) _________// ________20__г.

Матвеев А.П. Исследование поведения объекта. -Челябинск: ЮУрГУ, Ат-161, 16с.

Флеш-память. Принципы работы

Флеш-память (англ. flash memory) — разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.

Благодаря компактности, дешевизне, механической прочности, большому объему, скорости работы и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах и носителях информации.

История

Предшественниками технологии флеш-памяти можно считать ультрафиолетово стираемые ПЗУ и электрически стираемые (EEPROM). Эти приборы также имели матрицу транзисторов с плавающим затвором, в которых инжекция электронов в плавающий затвор («запись») осуществлялась созданием большой напряженности электрического поля в тонком диэлектрике. Однако площадь разводки компонентов в матрице резко увеличивалась если требовалось создать поле обратной напряженности для снятия электронов с плавающего затвора («стирания»). Поэтому и возникло два класса устройств: в одном случае жертвовали цепями стирания получая память высокой плотности а в другом случае делали полнофункциональное устройство с гораздо меньшей емкостью.

Соответственно усилия инженеров были направлены на решение проблемы плотности компоновки цепей стирания. Они увенчались успехом изобретением инженера компании Toshiba Фудзио Масуокой в 1984 году. Название «флеш» было придумано также в Toshiba коллегой Фудзио, Сёдзи Ариидзуми, потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния.

В 1988 году Intel выпустила первый коммерческий флеш-чип NOR-типа.

NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference.

Принцип действия

Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области (кармане) полупроводниковой структуры.

Изменение заряда («запись» и «стирание») производится приложением между затвором и истоком большого потенциала чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора (эффект Hot carrier injection (англ.)русск.).

Чтение выполняется полевым транзистором, для которого карман выполняет роль затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора что и регистрируется цепями чтения.

Эта конструкция снабжается элементами которые позволяют ей работать в большом массиве таких же ячеек.

1 2 3

  1. Разрез транзистора с плавающим затвором.

  2. Программирование флеш-память.

  3. Стирание флеш-памяти

Nor и nand приборы

Различаются методом соединения ячеек в массив и алгоритмами чтения-записи.

Конструкция NOR использует классическую двумерную матрицу проводников («строки» и «столбцы») в которой на пересечении установлено по одной ячейке. При этом проводник строк подключался к стоку транзистора, а столбцов к второму затвору. Исток подключался к общей для всех подложке. В такой конструкции было легко считать состояние конкретного транзистора подав положительное напряжение на один столбец и одну строку. Конструкция NAND — трехмерный массив. В основе та же самая матрица что и NOR, но вместо одного транзистора в каждом пересечении устанавливается столбец из последовательно включенных ячеек. В такой конструкции затворных цепей в одном пересечении получается много. Плотность компоновки можно резко увеличить (ведь к одной ячейке в столбце подходит только один проводник затвора), однако алгоритм доступа к ячейкам для чтения и записи заметно усложняется.

Технология NOR позволяет получить быстрый доступ индивидуально к каждой ячейке, однако площадь ячейки велика. Наоборот, NAND имеют малую площадь ячейки но относительно длительный доступ сразу к большой группе ячеек. Соответственно различается область применения: NOR используется как непосредственная память программ микропроцессоров и для хранения небольших вспомогательных данных. Топовые значения объемов микросхем NOR — 64 МБайт. NAND имеет топовые значения объема на микросхему в единицы гигабайт.Названия NOR и NAND произошли от ассоциации схемы включения ячеек в массив со схемотехникой микросхем КМОП логики.

Надо заметить что существовали но не прижились и другие варианты объединения ячеек в массив.

1 2

  1. Компоновка шести ячеек NOR flash.

  2. Структура одного столбца NAND flash.

SLC и MLC приборы

Различают приборы в которых элементарная ячейка хранит один бит информации и несколько. В однобитовых ячейках различают только два уровня заряда на плавающем затворе. Такие ячейки называют одноуровневыми (англ. single-level cell, SLC). В многобитовых ячейках различают больше уровней заряда, их называют многоуровневыми (англ. multi-level cell, MLC[2]). MLC-приборы дешевле и более емкие чем SLC-приборы, однако время доступа и количество перезаписей хуже.

Аудио память

Естественным развитием идеи MLC ячеек была мысль записать в ячейку аналоговый сигнал. Наибольшее применение такие аналоговые флеш-микросхемы получили в воспроизведении звука. Такие микросхемы получили широкое распространение во всевозможных игрушках, звуковых открытках и т. д.[3]

Ограничения технологии

Запись и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи для формирования высоких напряжений, тогда как при чтении затраты энергии относительно малы.

Ресурс записи

Изменение заряда сопряжено с накоплением необратимых изменений в структуре и потому количество записей для ячейки флеш-памяти ограничено (типично до 100 тыс. раз).Одна из причин деградации — невозможность индивидуально контролировать заряд плавающего затвора в каждой ячейке. Дело в том что запись и стирание производятся над множеством ячеек одновременно (это неотъемлемое свойство технологии флеш-памяти). Автомат записи контролирует достаточность инжекции заряда по референсной ячейке или по средней величине. Постепенно заряд отдельных ячеек разбегается и однажды выходит за допустимые границы которые может скомпенсировать инжекцией автомат записи и воспринять устройство чтения. Понятно что на ресурс влияет степень идентичности ячеек. Забавное следствие: с уменьшением топологических норм полупроводниковой технологии создавать идентичные элементы все труднее, поэтому вопрос ресурса записи становится все острее. MLC устройства имеют гораздо худшие параметры ресурса записи чем SLC.

Срок хранения данных

Изоляция кармана неидеальна, заряд постепенно изменяется. Типовой срок хранения заряда заявляемый большинством производителей для бытовых изделий — 10..20 лет. Специфические внешние условия могут катастрофически уменьшить срок хранения данных. Например, повышенные температуры или радиоактивное излучение.

Иерархическая структура

Стирание, запись и чтение флеш-память всегда происходит относительно крупными блоками разного размера, при этом размер блока стирания всегда больше блока записи а размер блока записи не меньше чем размер блока чтения. Собственно это характерный отличительный признак флеш-память от классической EEPROM.

Как следствие все микросхемы флеш-память имеют ярко выраженную иерархическую структуру. Память разбивается на блоки, блоки состоят из секторов, сектора из страниц. В зависимости от назначения конкретной микросхемы глубина иерархии и размер элементов может меняться.

Например микросхема NAND может иметь размер стираемого блока в сотни кбайт, размер страницы записи и чтения 4 кбайт. Для NOR микросхем размер стираемого блока варьируется от единиц до сотен кбайт, сектор записи — от единиц до сотен байт, страница чтения — единицы-десятки байт.

Скорость чтения и записи

Скорость стирания варьируется от единиц до сотен миллисекунд в зависимости от размера стираемого блока. Скорость записи — десятки..сотни микросекунд. Типовая скорость чтения для микросхем NOR нормируется в десятки наносекунд. Для микросхем NAND скорость чтения десятки микросекунд.

Особенности применения

Стремление достичь предельных значений емкости для NAND устройств привело к «стандартизации брака» — праву выпускать и продавать микросхемы с некоторым процентом бракованных ячеек и без гарантии появления новых в процессе эксплуатации. Чтобы минимизировать потери данных каждая страница памяти снабжается небольшим дополнительным блоком в котором записывается контрольная сумма, информация для восстановления одиночных битовых ошибок, информация о сбойных элементах на этой странице и количеству записей на эту страницу.

Сложность алгоритмов чтения и допустимость бракованных ячеек вынудило разработчиков оснастить микросхемы NAND памяти специфическим командным интерфейсом. Это означает что нужно сначала подать специальную команду переноса указанной страницы памяти в специальный буфер внутри микросхемы, дождаться окончания этой операции, считать буфер, проверить целостность данных (и при необходимости попытаться восстановить их).

Слабое место флеш-память — количество циклов перезаписи в одной странице. Ситуация ухудшается также в связи с тем, что стандартные файловые системы часто записывают данные в одно и то же место. Часто обновляется корневая таблица файловой системы, так что первые секторы памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволит существенно продлить срок работы памяти. Подробнее про задачу равномерного распределения износа. Подробнее о проблемах управления NAND памятью, вызванных разным размером страниц стирания и записи см. Write amplification (англ.)русск..