Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матрица.doc
Скачиваний:
8
Добавлен:
10.07.2019
Размер:
300.03 Кб
Скачать

[Править] Линейная зависимость

Если какой-либо вектор можно представить в виде линейной комбинации, то говорят о линейной зависимости данного вектора от элементов комбинации.

Точнее, говорят так: некоторая совокупность элементов векторного пространства называется линейно зависимой, если существует равная нулю линейная комбинация элементов данной совокупности или

где не все числа равны нулю; если такой нетривиальной комбинации не существует, то данная совокупность векторов называется линейно независимой.

Линейная зависимость векторов означает, что какой-то вектор заданной совокупности линейно выражается через остальные векторы.

Каждая матрица представляет собой совокупность векторов (одного и того же пространства). Две такие матрицы — две совокупности. Если каждый вектор одной совокупности линейно выражается через векторы другой совокупности, то на языке теории матриц этот факт описывается при помощи произведения матриц:

  • если строки матрицы C линейно зависят от строк матрицы B, то C = AB для некоторой матрицы A;

  • если столбцы матрицы C линейно зависят от столбцов другой матрицы A, то C = AB для некоторой матрицы B.

[править] Ранг матрицы

Количество линейно независимых строк матрицы называют строчным рангом матрицы, а количество линейно независимых столбцов матрицы называют столбцовым рангом матрицы. В действительности, оба ранга совпадают. Их общее значение и называется рангом матрицы.

Другой эквивалентный данному подход заключается в определении ранга матрицы, как максимального порядка отличного от нуля минора матрицы.

[править] Свойства

[править] Матричные операции

Сложение и вычитание допускается только для матриц одинакового размера.

Существует нулевая матрица Θ такая, что её прибавление к другой матрице A не изменяет A, то есть

A + Θ = A

Все элементы нулевой матрицы равны нулю.

Возводить в степень можно только квадратные матрицы.

  • Ассоциативность сложения: A + (B + C) = (A + B) + C.

  • Коммутативность сложения: A + B = B + A.

  • Ассоциативность умножения: A(BC) = (AB)C.

  • Вообще говоря, умножение матриц некоммутативно: . Используя это свойство, вводят коммутатор матриц.

  • Дистрибутивность умножения относительно сложения:

A(B + C) = AB + AC;

(B + C)A = BA + CA.

  • С учётом упомянутых выше свойств, матрицы образуют кольцо относительно операций сложения и умножения.

  • Свойства операции транспонирования матриц:

(AT)T = A

(AB)T = BTAT

(A − 1)T = (AT) − 1, если обратная матрица A - 1 существует.

(A + B)T = AT + BT

detA = detAT

[править] Примеры

Основная статья: Список матриц

[править] Матрица как запись коэффициентов системы линейных уравнений

Систему из m уравнений с n неизвестными

можно представить в матричном виде

и тогда всю систему можно записать так:

AX = B,

где A имеет смысл таблицы коэффициентов aij системы уравнений.

Если m = n и матрица A невырожденная, то решение этого уравнения состоит в нахождении обратной матрицы A - 1, поскольку умножив обе части уравнения на эту матрицу слева

A - 1AX = A - 1B

A − 1A — превращается в E (единичную матрицу). И это даёт возможность получить столбец корней уравнений

X = A - 1B.

Все правила, по которым проводятся операции над матрицами, выводятся из операций над системами уравнений.

[править] Квадратная матрица и смежные определения

Если количество строк матрицы равно количеству столбцов, то такая матрица называется квадратной.

Для квадратных матриц существует единичная матрица E (аналог единицы для операции умножения чисел) такая, что умножение любой матрицы на неё не влияет на результат, а именно

EA = AE = A

У единичной матрицы единицы стоят только по главной диагонали, остальные элементы равны нулю

Для некоторых квадратных матриц можно найти так называемую обратную матрицу. Обратная матрица A - 1 такова, что если умножить матрицу на неё, то получится единичная матрица:

AA − 1 = E

Обратная матрица существует не всегда. Матрицы, для которых обратная существует, называются невырожденными (или регулярными), а для которых нет — вырожденными (или сингулярными). Матрица невырождена, если все ее строки (столбцы) линейно независимы как векторы. Максимальное число линейно независимых строк (столбцов) называется рангом матрицы. Определителем (детерминантом) матрицы называется значение нормированной кососимметрической (антисимметрической) полилинейной формы валентности на столбцах матрицы. Квадратная матрица над числовым полем вырождена тогда и только тогда, когда ее определитель равен нулю.

[править] Элементарные преобразования матриц

Основная статья: Элементарные преобразования матрицы

Элементарными преобразованиями строк матрицы называются следующие преобразования:

  1. Умножение строки на число отличное от нуля,

  2. Прибавление одной строки, умноженной на число, к другой строке,

  3. Перестановка местами двух строк.

Элементарные преобразование столбцов матрицы определяются аналогично. При элементарных преобразованиях ранг матрицы не меняется.

[править] Матрица линейного оператора

Матрица линейного оператора — матрица, выражающая линейный оператор в некотором базисе. Для того, чтобы ее получить, необходимо подействовать оператором на векторы базиса и координаты полученных векторов (образов базисных векторов) записать в столбцы матрицы.

Матрица оператора аналогична координатам вектора. При этом действие оператора на вектор равносильно умножению матрицы на столбец координат этого вектора в том же базисе.

Выберем базис . Пусть  — произвольный вектор. Тогда его можно разложить по этому базису:

,

где xk — координаты вектора в выбранном базисе.

Здесь и далее предполагается суммирование по немым индексам.

Пусть  — произвольный линейный оператор. Подействуем им на обе стороны предыдущего равенства, получим

.

Вектора также разложим в выбранном базисе, получим

,

где  — j-я координата k-го вектора из .

Подставим разложение в предыдущую формулу, получим

.

Выражение , заключённое в скобки, есть ни что иное, как формула умножения матрицы на столбец, и, таким образом, матрица при умножении на столбец xk даёт в результате координаты вектора , возникшего от действия оператора на вектор , что и требовалось получить.

 Комментарий: Если в полученной матрице поменять местами пару столбцов или строк, то мы, вообще говоря, получим уже другую матрицу, соответствующую тому же набору базисных элементов . Иными словами, порядок базисных элементов предполагается жёстко упорядоче Выложите по одной своей фотки обязательно подпишите….