В-5 контрольная работа статистика маркетинг 2-й курс - сдана
.docМинистерство образования Республики Беларусь
Учреждение образования
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Контрольная работа
по курсу «Статистика»
Вариант №5
Минск 2009
Задача 1. Произведите группировку двадцати предприятий по объему продукции на основании следующих данных:
|
Номер предприятия |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Объем продукции, млрд. р. |
32,0 |
15,5 |
36,2 |
24,5 |
155,0 |
58,0 |
44,2 |
24,3 |
27,4 |
83,0 |
|
Номер предприятия |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
|
Объем продукции, млрд. р. |
25,5 |
43,4 |
68,5 |
143,1 |
52,6 |
48,5 |
31,8 |
25,6 |
58,0 |
182,5 |
Выделите типовые группы с интервалами: от 15,0 до 30,0; от 30,0 до 80,0; от 80,0 до 200,0 млрд р.
Решение:
Произведем группировку, подсчитаем, сколько предприятий попадет в каждый интервал.
|
объем продукции, млрд. руб. |
число предприятий |
|
15,0-30,0 |
6 |
|
30,0-80,0 |
10 |
|
80,0-200,0 |
4 |
|
Всего |
20 |
Группировка предприятий по объему продукции показала, что 6 предприятий производят объем продукции 15-30 млрд. руб., 10 предприятий- 30-80 млрд. руб. и 4 предприятия 80-200 млрд. руб.
Задача 2. Определите отдельно число телефонов и трансляционных радиоточек, приходящихся на 100 жителей района, а также динамику полученных показателей на основании следующих данных:
|
Год |
Число на конец года, ед. |
Население на конец года, тыс. чел. |
|
|
Телефонных аппаратов |
Радиотрансляционных точек |
||
|
Базисный |
6 435 |
18 480 |
82,5 |
|
Отчетный |
8 385 |
29 445 |
97,5 |
Решение:
Число телефонов на 100 жителей
![]()
Базисный период
телефонов на 100
жителей
Отчётный период
телефонов на 100
жителей
Число радиотрансляционных точек на 100 жителей
![]()
Базисный период
радиотрансляционных
точек на 100 жителей
Отчетный период
радиотрансляционных
точек на 100 жителей
Динамика полученных показателей
![]()
![]()
![]()
По сравнению с базисным периодом в отчетном периоде количество телефонов, приходившегося на 100 жителей увеличилось 10,3%, радиотрансляционных точек приходившихся 100 жителей на 34,8%.
Задача 3. Используя следующие данные, рассчитайте средний объем продукции по предприятию обычным способом и способом моментов:
|
Группы предприятий по объему продукции, млрд р. |
До 20 |
20–30 |
30–40 |
40–50 |
50–60 |
Свыше 60 |
|
Число предприятий |
10 |
15 |
18 |
4 |
4 |
2 |
Решение:
Обычным способом
![]()
где
-
середина i-гo интервала
-
частота i-ro интервала
-
число единиц в совокупности
=20-10/2=15
………………..
………………..
=60+10/2=65
![]()
Метод моментов:
выберем с=40
|
объём продукции, млрд. руб. |
середина интервала,
|
число предприятий,
|
|
|
|
10-20 |
15 |
10 |
-2,5 |
-25 |
|
20-30 |
25 |
15 |
-1,5 |
-22,5 |
|
30-40 |
35 |
18 |
-0,5 |
-9 |
|
40-50 |
45 |
4 |
0,5 |
2 |
|
50-60 |
55 |
4 |
1,5 |
6 |
|
60-70 |
65 |
2 |
2,5 |
5 |
![]()
Cредний объем продукции составил 31,79 млрд. руб
Задача 4. По данным задачи 3: 1) определите моду и медиану изучаемого показателя; 2) постройте гистограмму; 3) оцените характер асимметрии.
|
Группы предприятий по объему продукции, млрд р. |
До 20 |
20–30 |
30–40 |
40–50 |
50–60 |
Свыше 60 |
|
Число предприятий |
10 |
15 |
18 |
4 |
4 |
2 |
Решение:
1)

где
–
начало (нижняя граница) модального
интервала;
–
величина интервала;
–
частота модального интервала;
–
частота интервала, предшествующего
модальному;
–
частота интервала, следующего за
модальным.
выбираем интервал с наибольшей частотой, в данном случае интервал 30-40 млрд. руб.
млрд. руб.
Медианное значение

где
–
начало (нижняя граница) медианного
интервала;
– величина интервала;
–
сумма всех частот ряда;
–
сумма накопленных частот вариантов до
медианного;
–
частота медианного интервала.
Выбираем интервал в котором накопленная частота превосходит 26, это интервал 30-40 млрд. руб.
млрд. руб.
2) Полигон и гистограмма

3) Характер асимметрии
![]()
Расчетная таблица
|
|
|
|
|
15 |
0,188679245 |
2,830188679 |
|
25 |
0,283018868 |
7,075471698 |
|
35 |
0,339622642 |
11,88679245 |
|
45 |
0,075471698 |
3,396226415 |
|
55 |
0,075471698 |
4,150943396 |
|
65 |
0,037735849 |
2,452830189 |
|
сумма |
1 |
31,79 |
млрд. руб.
Так как
,то наблюдается правосторонняя асимметрия.
Задача 5. По данным таблицы произведите выравнивание ряда динамики методом укрупнения периодов (в квартальном разрезе) и методом скользящей средней (трехчленной).
Сделайте вывод о характере общей тенденции изучаемого явления.
|
Месяцы |
I |
II |
III |
IV |
V |
VI |
VII |
VIII |
IX |
X |
XI |
XII |
|
Выпуск продукции, тыс. ед. |
94 |
88,1 |
106,0 |
98,0 |
90,0 |
97,0 |
108,0 |
94,0 |
110,0 |
97,0 |
114,0 |
122,0 |
Решение:
произведем выравнивание ряда путем укрупнения периодов (в квартальном разрезе)
1 квартал 94+88,1+106,0=288,1 тыс. ед.
2 квартал 98,0+90,0+97,0=285,0 тыс. ед.
3 квартал 108,0+94,0+110,0=312,0 тыс. ед.
4 квартал 97,0+114,0+122,0=333,0 тыс. ед
|
1 кв |
288,1 |
|
2 кв |
285 |
|
3 кв |
312 |
|
4 кв |
333 |

После укрупнения интервалов, видно, что рост выпуска продукции происходит в 3 и 4 кварталах.
Произведем сглаживание при помощи скользящей средней.
|
Месяцы |
|
выпуск продукции за три месяца |
значение средней |
|
I |
94 |
|
|
|
II |
88,1 |
94+88,1+106=288,1 |
288,1/3=96,0 |
|
III |
106 |
88,1+106+98=292,1 |
292,1/3=97,4 |
|
IV |
98 |
106+98+90=294 |
294/3=98,0 |
|
V |
90 |
98+90+97=285 |
285/3=95,0 |
|
VI |
97 |
90+97+108=295 |
295/3=98,3 |
|
VII |
108 |
97+108+94=299 |
299/3=99,7 |
|
VIII |
94 |
108+94+110=312 |
312/3=104,0 |
|
IX |
110 |
94+110+97=301 |
301/3=100,3 |
|
X |
97 |
110+97+114=321 |
321/3=107,0 |
|
XI |
114 |
97+114+122=333 |
333/3=111,0 |
|
XII |
122 |
|
|

Мы получили сглаженную линию тренда, показывающего увеличение выпуска продукции начиная с 5 месяца.
Задача 6. На основании следующих данных вычислите: 1) индивидуальные индексы средней заработной платы по каждой группе рабочих; 2) агрегатный индекс заработной платы. Сформулируйте выводы по исчисленным показателям.
|
Группы телефонистов по уровню квалификации |
Базисный период |
Отчетный период |
||
|
Фонд оплаты труда, млн р. |
Среднесписочная численность рабочих, чел. |
Фонд оплаты труда, млн р. |
Среднесписочная численность рабочих, чел. |
|
|
I кл. |
190,0 |
95 |
210,0 |
100 |
|
II кл. |
115,2 |
72 |
117,3 |
69 |
|
III кл. |
56,0 |
40 |
52,5 |
35 |
-
индивидуальные индексы средней заработной платы
Средняя заработная плата
,
где
ОТ- фонд оплаты труда работников
ЧР- численность работников
Индивидуальный индекс средней заработной платы для каждой группы по квалификации
![]()
![]()
![]()
![]()
-
агрегатный индекс заработной платы
![]()
![]()
В отчетном периоде средняя заработная плата выросла на 5% для телефонистов 1 класса, на 6,3% для телефонистов 2 класса, на 7,1% для телефонистов 3 класса. В целом средняя заработная плата выросла на 6,7%.
Задача 7. Имеются следующие данные:
|
Год |
Часовая выработка на одного рабочего, ед. |
Продолжительность рабочего дня, ч |
Продолжительность рабочего месяца, дн. |
|
Базисный |
35 |
7,9 |
21 |
|
Отчетный |
60 |
7,8 |
20 |
Определите: 1) влияние динамики часовой выработки одного рабочего, продолжительности рабочего дня и рабочего месяца на динамику среднемесячной выработки; 2) количество продукции (в абсолютном выражении) в расчете на одного рабочего, полученное (недополученное) за счет каждого фактора.
Решение:
Пусть:
A- часовая выработка на одного рабочего, ед;
B- продолжительность рабочего дня, ч
С- продолжительность рабочего месяца, дн.
Найдем количество ед. продукции произведенной рабочим за месяц:
![]()
ед. – в базисном
периоде
ед. – в отчётном
периоде
Динамика количества продукции за месяц
![]()
За счет продолжительности рабочего месяца
![]()
За счет изменения продолжительности рабочего дня
![]()
За счет изменения часовой выработки рабочего
![]()
Абсолютное изменение количества продукции в отчетном периоде по сравнению с базисным
ед.
В том числе за счет изменения продолжительности рабочего месяца
![]()
За счет изменения продолжительности рабочего дня
![]()
За счет изменения производительности
ед.
Количество продукции в отчетном периоде, по сравнению с базисным периодом увеличилось на 3553,5 единиц, при этом за счет изменения продолжительности рабочего месяца уменьшилось на 276,5 единиц или на 4,8%, за счет изменения продолжительности рабочего дня уменьшилось на 70 единиц или на 1,3%, за счет изменения часовой выработки работника увеличилось на 3900 единиц или на 71,4%.
Задача 8. Изменение удельного веса городского населения в общей численности населения области с 15 января 1970 г. по 15 января 1989 г. характеризуется следующими данными:
|
Год |
Численность населения, % |
||
|
городского |
сельского |
всего |
|
|
1970 |
48 |
52 |
100 |
|
1989 |
56 |
44 |
100 |
Изобразите данные этой таблицы с помощью прямоугольных и секторных диаграмм. Какие выводы об изменении структуры населения области за этот период можно сделать по данным графическим изображениям?
Решение:
По данным таблицы средствами Microsoft Excel построим прямоугольные и секторные диаграммы


По данным графикам видно, что в период с 1970 по 1989 год в структуре населения произошло зеркальное изменение: в 1970 году преобладало сельское население, в 1989 году стало преобладать городское население.
Задача 9. Методом механического отбора проведено однопроцентное обследование веса однотипных деталей, изготовленных цехом за сутки. Распределение 100 отобранных деталей по весу дало следующие результаты:
|
Вес деталей, г |
96–98 |
98–100 |
100–102 |
102–104 |
|
Число деталей |
8 |
45 |
42 |
5 |
Определите с вероятностью 0,954: а) средний вес деталей в выборке; б) предельную ошибку среднего веса суточной продукции данного типа деталей; в) пределы, в которых может быть гарантирован средний вес детали во всей суточной продукции.
Решение:
расчетная таблица
|
|
|
|
|
|
|
96-98 |
8 |
97 |
776 |
75272 |
|
98-100 |
45 |
99 |
4455 |
441045 |
|
100-102 |
42 |
101 |
4242 |
428442 |
|
102-104 |
5 |
103 |
515 |
53045 |
|
|
100 |
|
9988 |
997804 |
