
- •1 Электрический заряд и электрический ток.
- •Закон сохранения электрического заряда (Faraday Michael, 1843).
- •1.2 Квантование электрического заряда. Элементарный заряд.
- •1.3 Точечный и распределённый заряд.
- •1.4 Электрический ток. Плотность электрического тока.
- •2.1 Измерение полей e и b.
- •2.2 Электрическое поле неподвижного точечного заряда (закон Кулона) и магнитное поле элементарного тока (закон Био-Савара-Лапласа).
- •2.3 Принцип суперпозиции.
- •4.1 Оператор Гамильтона (набла оператор).
- •4.1 Поток и расходимость (дивергенция) векторного поля.
- •4.2 Циркуляция и вихрь (ротор) векторного поля.
- •4.3 Теорема Гаусса.
- •5.5 Диамагнетизм.
- •5.6 Парамагнетизм.
- •5.7 Ферромагнетизм.
- •Диполь.
- •6.4 Магнитный момент в магнитном поле.
5.5 Диамагнетизм.
Диамагнетизм [от греч. dia... — приставка, означающая здесь расхождение (силовых линий), и магнетизм], один из видов магнетизма; проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля.
Диамагнетизм свойствен всем веществам. При внесении какого-либо тела в магнитное поле в электронной оболочке каждого его атома, в силу закона электромагнитной индукции, возникают индуцированные магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему магнитному полю (независимо от того, имелся ли первоначально у атома собственный магнитный момент или нет и как он был ориентирован).
В веществе диамагнетизм может перекрываться в большей или меньшей степени электронным или ядерным парамагнетизмом, ферромагнетизмом или антиферромагнетимом.
У диамагнитных веществ электронные оболочки атомов (молекул) не обладают постоянным магнитным моментом. Магнитные моменты, создаваемые отдельными электронами в таких атомах, в отсутствие внешнего магнитного поля взаимно скомпенсированы. В частности, это имеет место в атомах, ионах и молекулах с целиком заполненными электронными оболочками, например в атомах инертных газов, в молекулах водорода, азота.
Удлинённый образец диамагнетика в однородном магнитном поле ориентируется перпендикулярно силовым линиям поля (вектору напряжённости поля). Из неоднородного магнитного поля он выталкивается в направлении уменьшения напряжённости поля.
Индуцированный магнитный момент M, приобретаемый диамагнитного вещества, пропорционален напряжённости внешнего поля Н, т. е. M = H. Коэффициент называют диамагнитной восприимчивостью. Диамагнитная восприимчивость имеет отрицательный знак (т.к. M и Н направлены навстречу друг другу). Обычно абсолютная величина мала (~ 10-6), например для гелия = 1,910-6.
При «классическом» рассмотрении диамагнетизма изолированного атома полагается, что вся совокупность электронов изолированного атома приобретает под действием внешнего магнитного поля синхронное вращательное движение вокруг оси, проходящей через центр атома параллельно направлению Н. Это совместное вращение всех электронов атома называют прецессией Лармора. Вклад каждого электрона в диамагнитную восприимчивость изолированного атома
д = (e2/(6m0)) <R2>,
где е — элементарный заряд <R2> — средний квадрат расстояния электрона от ядра атома, m — масса электрона. Наибольший вклад в диамагнитную восприимчивость вещества дают наиболее удалённые от ядра электроны. Формула диамагнитной восприимчивости позволяет теоретически рассчитать диамагнитную восприимчивость совокупности изолированных атомов (например, 1 моля или 1 см3 вещества), если известно число электронов в атомах и пространственное их распределение.
При не очень высоких температурах тепловое движение атомов слабо влияет на движение электронов в них. Поэтому диамагнетизм практически не зависит от температуры.
Если атомы не изолированы друг от друга, а, напротив, сильно взаимодействуют между собой, например, в жидкостях или твёрдых телах, то электронные оболочки таких атомов деформируются, и наблюдаемый диамагнетизм оказывается часто меньше, чем у изолированных атомов.
В металлах и полупроводниках часть валентных электронов атомов имеет возможность перемещаться от атома к атому по всему образцу (в металлах число таких «свободных» электронов не зависит от температуры и очень велико, в полупроводниках оно сравнительно мало при низких температурах и быстро растёт с нагреванием).
В обычных условиях диамагнитная восприимчивость слабо зависит от напряжённости магнитного поля. Однако при очень низких температурах у металлов (например, Be, Bi, Zn) и полупроводников в сильных полях наблюдается периодическое (осцилляционное) изменение восприимчивости при плавном увеличении напряжённости поля.
Наибольшее по абсолютной величине значение диамагнитной восприимчивости имеют сверхпроводники 1-го рода. У них = 1, а магнитная индукция равна нулю, т. е. магнитное поле не проникает в сверхпроводник (эффект Мейснера).