
- •Типовой расчёт по разделу «Дифференциальное исчисление функций нескольких переменных» Вариант № 1.
- •Вариант № 2.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 3.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 4.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 5.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 6.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 7.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 8.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 9.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 10.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 11.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 12.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 13.
- •1) Линеаризовать функцию в окрестности точки ;
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 15.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 16.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 17.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 18.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 19.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 20.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 21.
- •1) Линеаризовать функцию в окрестности точки ;
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 23.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 24.
- •1) Линеаризовать функцию в окрестности точки ;
- •Вариант № 25.
- •1) Линеаризовать функцию в окрестности точки ;
Типовой расчёт по разделу «Дифференциальное исчисление функций нескольких переменных» Вариант № 1.
Задание 1.
Найти и изобразить на плоскости область
определения функции двух переменных:
.
Задание 2. Найти частные производные первого порядка функций двух переменных:
2.1.
;
2.2.
;
2.3.
.
Задание 3.
Найти все частные производные второго
порядка функции двух переменных:
.
Задание 4.
Найти производную функции
в точке
по направлению вектора
.
Задание 5.
Найти градиент функции
в точке
.
Задание 6.
Дано: а) функция z=(x,y);
б) точки
,
.
Требуется:
1) линеаризовать функцию в окрестности точки ;
2) составить уравнение касательной плоскости и нормали к поверхности z=(x,y) в точке .
а)
;
б)
,
.
Задание 7.
Найти с помощью полного дифференциала
приближённое значение выражения
.
Задание 8.
Исследовать функцию
на экстремумы.
Задание 9.
Найти наибольшее и наименьшее значение
функции
в области
.
Задание 10. Дана система точек, координаты которых указаны в таблице.
x |
1 |
2 |
3 |
4 |
5 |
y |
4,3 |
5,3 |
3,8 |
1,8 |
2,3 |
Построить по методу
наименьших квадратов прямую
для данной системы точек. Найти среднее
квадратическое отклонение полученной
прямой от системы данных точек.
Вариант № 2.
Задание 1.
Найти и изобразить на плоскости область
определения функции двух переменных:
.
Задание 2. Найти частные производные первого порядка функций двух переменных:
2.1.
;
2.2.
;
2.3.
.
Задание 3.
Найти все частные производные второго
порядка функции двух переменных:
.
Задание 4.
Найти производную функции
в точке
по направлению вектора
.
Задание 5.
Найти градиент функции
в точке
.
Задание 6. Дано: а) функция z=(x,y); б) точки , . Требуется:
1) Линеаризовать функцию в окрестности точки ;
2) составить уравнение касательной плоскости и нормали к поверхности z=(x,y) в точке .
а)
;
б)
,
.
Задание 7.
Найти с помощью полного дифференциала
приближённое значение выражения
.
Задание 8.
Исследовать функцию
на экстремумы.
Задание 9.
Найти наибольшее и наименьшее значение
функции
в области
.
Задание 10. Дана система точек, координаты которых указаны в таблице.
x |
1 |
2 |
3 |
4 |
5 |
y |
4,5 |
5,5 |
4,0 |
2,0 |
2,5 |
Построить по методу наименьших квадратов прямую для данной системы точек. Найти среднее квадратическое отклонение полученной прямой от системы данных точек.
Вариант № 3.
Задание 1.
Найти и изобразить на плоскости область
определения функции двух переменных:
.
Задание 2. Найти частные производные первого порядка функций двух переменных:
2.1.
;
2.2.
;
2.3.
.
Задание 3.
Найти все частные производные второго
порядка функции двух переменных:
.
Задание 4.
Найти производную функции
в точке
по направлению вектора
.
Задание 5.
Найти градиент функции
в точке
.
Задание 6. Дано: а) функция z=(x,y); б) точки , . Требуется: