
- •1. Значение тампонажных растворов при бурении скважин. Классификация вяжущих веществ.
- •2. Тампонажный портландцемент
- •3. Клинкер и его химический состав
- •4. Производство портландцемента
- •Лекция 2. Минералогический состав портланд-цемента, Взаимодействие с водой.
- •1. Минералогический состав портландцементного клинкера
- •2. Твердение портландцемента
- •3 Гидратация цементов как химический процесс. Фазовый состав продукции твердения
- •4.Структура цементного камня
- •Лекция 3. Физико-химические явления, протекающие при твердении тампонажных растворов
- •1. Водоотдача тампонажных растворов
- •2. Седиментация в тампонажных растворах и ее последствия
- •3. Контракция
- •4. Усадка
- •5. Прочность цементного камня
- •6. Проницаемость цементного камня.
- •7. Сцепление цементного камня с обсадными трубами
- •8. Тепловыделения при гидратации тампонажного цемента
- •Лекция 4. Регулирование процесса твердения цементного раствора
- •Добавки первого класса
- •Добавки второго класса
- •Добавки третьего класса
- •Добавки четвертого класса
- •Классификация тампонажных портландцементов по гост 1581-96
- •Тампонажные материалы и химреагенты согласно классификации ар1
- •Лекции 5 Разновидности тапонажых портландементов.
- •1. Быстротвердеющий портландцемент.
- •2. Пластифицированный портландцемент
- •3. Гидрофобный портландцемент.
- •4. Сульфатостойкий портландцемент.
- •5. Пуццолановый портландцемент
- •6.1.1.Шлакопортландцемент
- •8. Песчанистый тампонажный портландцемент.
- •9. Известково-кремнеземистые цементы
- •10. Белито-кремнеземистый цемент
- •11. Глиноземистый цемент
- •Лекция 6, 7 добавки для регулирования свойств тампонажного раствора и камня
- •1. Добавки регулирующие плотность тампонажного раствора
- •2. Расширяющие добавки
- •3. Добавки регулирующие реологические свойства тампонажных растворов
- •Добавки повышающие прочность и деформативную стойкость цементного камня.
- •Лекция 8 Коррозия цементного камня. Виды коррозии.
Лекция 3. Физико-химические явления, протекающие при твердении тампонажных растворов
Содержание
1. Водоотдача тампонажных растворов
2. Седиментация в тампонажных растворах и ее последствия
3. Контракция
4. Усадка
5. Прочность цементного камня
6. Проницаемость цементного камня
7. Сцепление цементного камня с обсадными трубами
8. Тепловыделения при гидратации тампонажного цемента
После прокачивания тампонажного раствора в затрубное пространство он еще длительное время до превращения, в камень находится в жидком состоянии. При длительном пребывании тампонажного раствора в затрубном пространстве в состоянии покоя, кроме отфильтровывания жидкой фазы и гравитационного расслоения, раствор может загрязниться минерализованными агрессивными водами, газом поступающим из пластов. Вплоть до начала затвердевания тампонажный раствор не является преградой для движения флюидов, что приводит к образованию каналов, по которым перетоки продолжаются и после затвердевания.
Тампонажный раствор до схватывания и твердения представляет собой систему из огромного числа различных по форме и размерам частиц, соединенных между собой в скелетную структуру, прочность которой зависит от прочности связей между частицами и их индивидуальных характеристик. Поровое пространство между частицами заполнено жидкостью, которая двигается под действием приложенных к ней сил. В местах, где эти силы превышают прочность связей, происходят местные разрушения структуры. Здесь формируются фильтрационные потоки, которые, прокладывая путь по наиболее слабым местам, имеют сложные неупорядоченные траектории. Твердые частицы, увлекаемые потоками, перемещаясь поступательно, вращаясь и испытывая бесчисленные столкновения, попадают в силу стохастического характера всех этих факторов, в различные условия. Заходя, в поры ненарушенной структуры, они кольматируют их, образуя новые связи. Происходит перераспределение частиц (внутренняя суффозия), которая создает предпосылки для образования в системе участков с пониженной и повышенной пористостью. В зависимости от длительности, интенсивности и характера фильтрационных разрушений участки повышенной пористости могут быть объединены системой каналов различного диаметра, протяженности и конфигурации. При этом тампонажный камень, формирующийся в таких условиях, может оказаться проницаемым для пластовых флюидов.
Постоянно действующие перепады давления, видимо, интенсифицируют эти процессы, и приводят к формированию капилляров большой величины, соединению капилляров в свищи и т.д.
Образованию капилляров способствует и отмеченное рядом советских и зарубежных исследователей существенные снижения гидростатического давления столба цементного раствора при нахождении его в покое до начала схватывания.
При седиментации (осаждение частиц под действием силы тяжести) твердая составляющая раствора перемещается вдоль неподвижных стенок скважины и колонны. Одновременно в цементном растворе возрастает прочность структурной решётки, следовательно, растут силы взаимодействия с вмещающей средой, и задерживается оседание твердой составляющей. Происходит выход ее из взвешенного состояния, т.е. твердая составляющая зависает на стенках скважины. Гидростатические давление в скважине будет создаваться не весом раствора, а только весом жидкости затворения. Это будет способствовать поступлению пластового флюида в тампонажный раствор, возникновению в последнем фильтрационных потоков, нарушению его сплошности и т.д.
Таким образом, продолжительное пребывание в затрубном пространстве тампонажного раствора в жидком состоянии нецелесообразно, прежде всего, с точки зрения качества разобщения пластов, и, кроме того, чем дольше тампонажный раствор пребывает в жидком состоянии, тем больше расход календарного времени на ОЗЦ (ожидание затвердевания цемента). Поэтому свойства тампонажного материала должны быть таковыми, чтобы цементный раствор при прочих равных условиях после окончания продавки быстро схватывался и превращался в прочный и малопроницаемый камень.