Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции Аксенова.DOC
Скачиваний:
59
Добавлен:
05.05.2019
Размер:
750.08 Кб
Скачать

Лекция 4. Регулирование процесса твердения цементного раствора

Рассмотрение кинетики процесса гидратации цемента позволяет рассчленить его на отдельные этапы:

- растворение твердой фазы и образование пересыщенного раствора;

- образование из пересыщенного раствора зародышей новой фазы кристаллогидратов;

- образование коагуляционной и кристаллизационной структуры.

Наиболее медленной стадией всего суммарного процесса твердения цемента является первая - растворение твердой фазы, и именно эта стадии определяет суммарную скорость процесса твердения. Скорость растворения клинкерных минералов, а, следовательно, и скорость процесса твердения зависят от следующих факторов:

- удельной поверхности цемента;

- фазового состава цементного клинкера;

- водоцементного отношения;

- температуры гидратации;

- вида и количества добавок.

С увеличением удельной поверхности цемента увеличивается поверхность реакции гидратации:

где: - константа равновесия;

- растворимость исходной фазы;

- текущая концентрация;

- энергия активации;

- удельная поверхность

- температура.

В результате ускоряется появление новообразований. Кроме того, с повышением дисперсности цемента при постоянном В/Ц уменьшается расстояние между ними и в системе раньше образуются "стесненные" условия, приводящие к образованию коагуляционной и кристаллизационной структур. На этом принципе основано получение быстротвердеющих портландцементов, имеющих удельную поверхность в 1,5-2,0 раза большую по сравнению с обычными. В то же время слежавшиеся, комковатые цементы отличаются замедленными сроками твердения. С уменьшением активной удельной поверхности связано и замедление процесса твердения при добавке к клинкеру двуводного гипса.

При креплении высокотемпературных скважин практически всегда возникает вопрос о замедлении процессов структурообразования и твердения растворов с целью обеспечения нормального процесса цементирования. Наиболее широкое применение для этой цели находят добавки ПАВ, электролиты и их композиции. В этом случае отмечается эффект синергизма. Механизм замедления процесса твердения добавками ПАВ и электролитов одинаков - блокировка поверхности исходного цемента. Механизм же взаимодействия их с вяжущим может быть разным, например, добавки ПАВ блокируют поверхность, адсорбируясь на поверхности цемента моно- и полимолекулярным слоем, а добавки электролитов, являющихся хорошо растворимыми соединениями, вступают в химическую реакцию с Ca(OH)2, и уже уменьшение активной поверхности цементных частиц происходит за счет образовавшихся в результате этого взаимодействия малорастворимых соединений.

Кравцовьм В. М. и др. получено уравнение, позволяющее расчетным путем определить количество добавки для замедления процессов структурообразования на заданный промежуток времени:

,

где: - начало схватывания раствора при введении добавки;

-начало схватывания раствора без добавок;

P - концентрация добавки, г/см3;

 - постоянная Лангмюра, г/см3.

Полученное уравнение справедливо для добавок, адсорбирующихся на поверхности твердой фазы мономолекулярным слоем, например, ССБ, Н3ВО3,. СuSO4 . При малых концентрациях добавки ССБ ее молекулы адсорбируются, подчиняясь мономолекулярному механизму. Борная кислота и медный купорос - электролиты, взаимодействующие с Са(ОН)2. Для добавок, адсорбирующихся полимолекулярным слоем, уравнения более сложные и в настоящее время теоретически еще не получены.

Скорость гидратации составляющих цементного клинкера определяется их химической активностью. Быстрее других протекают реакции гидратации трехкальциевого алюмината, в то же время гидратация белита при нормальных температурах очень замедлена.

Гидроалюминаты кальция имеют низкую прочность, однако, набирают максимальную прочность на ранних стадиях твердения и именно они определяют скорость структурообразования и твердения цемента на ранних стадиях. Поэтому цементы с повышенным содержанием алюминатов и алита относятся к быстротвердеющим, а цементы, с увеличенным содержанием белита - медленнотвердеющим и применяются, в основном, в интервалах повышенных температур.

Влияние водоцементного отношения на скорость твердения достаточно существенно. При постоянном фазовом составе клинкера уменьшенное содержание воды приводит к более быстрому образованию необходимого пересыщения раствора и возникновению "стесненных" условий, а следовательно, к ускорению сроков схватывания растворов. Этот факт может иметь место лишь при низких водоцементных отношениях (В/Ц = 0,3), а при В/Ц, используемых в практике цементирования скважин (0,45-0,55), изменение сроков схватывания при уменьшении В/Ц не столь значительно. В то же время, эффект ускорения твердения при снижении В/Ц может иметь место в скважинах против проницаемых отложений, когда из-за отфильтровывания в пласт жидкости затворения, возможны серьезные нарушения процесса цементирования - увеличение давления на цементировочных агрегатах. Положительная сторона этого явления нашла применение при создании пакер - фильтров.

Наибольшее влияние на скорость твердения цементных растворов оказывает температура твердения. При повышении или понижении температуры резко изменяется константа скорости растворения, что в свою очередь, изменяет скорость растворения вяжущего, и, следовательно, скорость твердения раствора.

П ри креплении глубоких скважин большинство рассмотренных выше факторов являются фиксированными, т.е. независимыми от исполнителей. Температура в скважине определяется геологическими особенностями разреза, удельная поверхность и фазовый состав вяжущего - технологией изготовления. Таким образом, наиболее приемлемый путь оптимизации свойств, цементного раствора - это ввод добавок регуляторов твердения. Влияние добавок замедлителей было рассмотрено выше. Остановимся на добавках - ускорителях твердения и механизме их действия. Повышение скорости растворения вяжущего может достигаться уменьшением энергии активации - потенциальной энергии, препятствующей началу химической реакции. Физический смысл "энергии активации" можно проиллюстрировать схемой, показанной на рис.

Е/

Е

Е1



Е2

Путь реакции

По оси ординат отложены значения суммарной энергии системы до реакции Е1 и после реакции Е2. Таким образом, разность Е=Е1 - Е2 характеризует термодинамическое условие, необходимое для самопроизвольного протекания химической реакции. Однако на ее пути имеется энергетический барьер Е (или Е1), преодолев который можно осуществить реакцию. Таким образом, энергия активации реакции - это та избыточная энергия, которую нужно приложить, чтобы реакция началась.

В принципе этот процесс можно сравнить с энергией для поднятия в гору шара, который уже затем сам скатится с горы. Увеличение температуры обеспечивает энергию, необходимую для преодоление этого барьера. При постоянной температуре процесса, когда для преодоления барьера энергия извне не сообщается, процесс твердения может быть ускорен уменьшением барьера, для этой цели используется различные виды добавок.

Механизм воздействия добавок в тампонажный раствор весьма сложен, отдельные его аспекты еще полностью не выяснены. Попытки объяснения влияния различных добавок зачастую противоречат друг другу и не раскрывают природы процесса. Поэтому они не могут служить основанием при разработке методики универсального подхода к регулированию процессов структурообразования и обоснования выбора реагентов. Сказанное обусловлено прежде всего отсутствием единого мнения относительно механизма твердения, значительным влиянием условий исследований и другими факторами.

Исследованиями Ребиндера показана возможность управления процессами структурообразования при схватывании и твердении добавками ПАВ и электролитами.

ПАВ изменяют течение всего процесса твердения. В начальный период гидратации они повышают растворимость исходных частиц цемента за счет их химического диспергирования и пептизации. При коллоидации, когда дальнейшее растворение частиц в насыщенном растворе замедляется, ПАВ, образуя адсорбционные пленки на поверхности исходного материала, замедляет их гидратацию, а на поверхности новообразований изменяет величину силы взаимодействия между частицами новообразований и тем самым изменяет в ту или иную сторону скорость образования кристаллизационной структуры.

Ускорение сроков схватывания под действием электролитов некоторыми исследователями объясняется коагуляционным действием за счет изменения двойного электрического слоя. Так, например, Аяпов У. С. считает, что главная причина ускорения сроков схватывания при введении электролитов это повышение концентрации коагуляционных катионов AI3+, Са2+ и т.п. Механизм этого явления представляется следующим образом: неорганические электролиты образует на поверхностях зерен вяжущего ионные оболочки, толщина и заряд которых определяется как концентрацией ионов в жидкой фазе, так и их свойствами и. в первую очередь валентностью.

Так установлено, что CaCI2 ускоряет процесс гидратации и структурообразование силикатов кальция, не вступая с ними в химическое взаимодействие. Его влияние объясняется снижением величины метастабильной растворимости силикатов кальция, а на процессы структурообразования алюминатов кальция - образованием нового соединения гидрохлоралюмината кальция. Аналогичное положение отмечено и для хлоридов калия и натрия.

В. Эйтель отмечает, что ускорители, и в частности хлорид кальция, понижают концентрации ионов гидроксида в растворе и усиливают растворимость реагирующих силикатов и алюминатов, в результате чего происходит быстрое осаждение частиц. Небольшие добавки CaCl2 оказывают замедляющее действие за счет образования двойной комплексной соли.

Результатами исследований установлено, что скорость твердения сокращается:

- вследствие нейтрализации щелочей, содержащихся в цементе;

- снижения пересыщения гипсом под действием добавок - готовых центров кристаллизации;

- образования комплексных солей алюминатов кальция;

- катализа образования гидросульфоалюмината;

- модифицированной кристаллизации С3АН6

Замедление же процессов твердения будет происходить:

- в результате повышения рН 12;

- пересыщения раствора гипсом;

- образования нерастворимых соединений на поверхности цементных частиц и новообразований;

- модифицирования кристаллизации С3АН.

Изложенное, послужило основой для классификации замедлителей на следующие 8 групп:

1. Оксиаминоалкилфосфоновые кислоты (оксиэтилы, дендифосфоновая, нитрилотриметилфосфоновая и их соли, образующие при гидратации минералов клинкера прочные клешневидные внутрикомплексные соединения - хелаты).

2. Окси, аминокислоты (виннокаменная, лимонная триоксиглутаровая, глюконовая, этилендиаминтетрауксусная и их соли - образуют также хелаты).

3. Сахара, которые за счет большого числа связей образуют вокруг зерен вяжущего пленки значительной прочности.

4. Фосфаты, бораты - реагирующие и связывающие с продуктами гидратации так же как и органические вещества предыдущей группы в основном благодаря наличию в составе гидроксильных групп.

5. Природные и синтетические танниновые реагенты, продукты на основе лигнина (ПФЛК, сулькор, пекор, синтан-5, нитролигник, ССБ), способные так же как и многоосновные окси и аминокислоты сочетаться с продуктами гидратации во внутрикомплексные производные.

6. Высокомолекулярные соединения - крахмал, КМЦ, полиакрилнитрил и другие подобные им, так называемые защитные полимеры, создающие вязкие слои на поверхности частиц, которые являются барьером для проникновения воды.

7. Двуводный гипс, и некоторые другие соединения кальция, которые сочетаются с гидратами клинкера в комплексные соли и образуют пленки на частицах.

8. ПА мылообразные вещества (сульфанол ОП-IO) значительно снижающие межфазовое натяжение и адсорбирующиеся на цементных зернах.

Добавки, влияющие на процесс твердения тампонажного раствора.

Исходя из механизма действия добавки можно условно разделить на четыре класса: первый - добавки, изменяющие растворимость вяжущих веществ и не вступающие с ними в химическую реакцию; второй - добавки, реагирующие с вяжущим с образованием труднорастворимых или малодиссоциирующих соединений; третий - добавки - готовые центры кристаллизации; четвертый - добавки, адсорбирующиеся на поверхности зерен вяжущих.