Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Avtomobilnyy_akkumulyator.doc
Скачиваний:
10
Добавлен:
03.05.2019
Размер:
126.98 Кб
Скачать

Автомобильный аккумулятор

Свинцовые стартерные аккумуляторы являются наиболее массовым и недорогим химическим источником тока, благодаря относительной дешевизне используемых материалов и высокой степени автоматизации производства.

Наилучшие образцы первых аккумуляторов, конца 19в., имели удельную энергию по массе 7-8 Вт•ч/кг при продолжительном разряде (у нынешних образцов 40-47 Вт•ч/кг).

Сейчас выпускаются герметизированный автомобильные аккумуляторы с иммобилизованным (гелеобразным или абсорбированным) электролитом, эти аккумуляторы обеспечивают работоспособность в любом пространственном положении и применяются в системах резервного и аварийного энергоснабжения, бытовой технике и т.п.

Активными веществами свинцового аккумулятора, принимающими участие в токообразующих реакциях, являются:

• на положительном электроде - двуокись свинца PbO2 (темно-коричневого цвета); • на отрицательном электроде - губчатый свинец Pb (серого цвета); • электролит - водный раствор серной кислоты H2SO4

В ходе разряда аккумулятора активная масса отрицательного электрода превращается из губчатого свинца в сульфат свинца, со сменой серого цвета на светло-серый, отдавая два электрона в электрическую цепь.

Pb + HSO4- → PbSO4 + H+ + 2e-

Активная масса положительного электрода по ходу разряда превращается из двуокиси свинца PbO2, так же как и активная масса отрицательного электрода, в сульфат свинца PbSO4 с изменением цвета с темно-коричневого на светло-коричневый, поглощая два електрона.

PbO2 + HSO4- + 3H+ + 2e- → PbSO4 + 2H2O

В результате разряда аккумулятора активные материалы и положительного (PbO2), и отрицательного (Pb) электродов преобразуются в сульфат свинца PbSO4. При этом на формирование сульфата свинца расходуется серная кислота, что вызывает снижение концентрации электролита и как следствие снижение его плотности. Суммарная реакция при разряде аккумулятора:

PbO2 + Pb + 2H2SO4 → 2PbSO4 + 2H2O

При зарядке аккумулятора идут обратные в противоположную сторону, в ходе которых кроме всего прочего происходит образование серной кислоты, в результате чего при заряде растет плотность электролита. Суммарное уравнение процесса заряда:

2PbSO4 + 2H2O → PbO2 + Pb + 2H2SO4

Когда реакции преобразования веществ в активных массах положительного и отрицательного электродов завершены, плотность электролита перестает меняться, что служит признаком завершения заряда аккумулятора. При дальнейшем продолжении заряда протекает так называемый вторичный процесс - электролитическое разложение воды на кислород и водород. Выделяясь из электролита в виде пузырьков газа, они создают иллюзию кипения электролита, что тоже служит признаком завершения процесса заряда.

Каждый аккумулятор состоит из пространственно разделенных разноименных электродов, погруженных в раствор электролита и помещенных в прочный корпус, который устойчив к химическому воздействию электролита, механическим нагрузкам и температурным колебаниям.

Активная масса электродов обладает высокой пористость (47-60%) и у заряженных аккумуляторов на положительном электроде состоит в основном из двуокиси свинца PbO2 (85-90 %), а на отрицательном электроде - из губчатого свинца Pb (80-90 %).

Раньше для изготовления корпуса аккумуляторов использовали эбонит, который обладает относительно низкой механической прочностью. Поэтому стенки эбонитовых блоков имеют толщину 6-8 мм для аккумуляторных батарей до 90 А•ч и 9-12 мм при емкости более 100 А•ч. При переходе с эбонита на сополимер полипропилена с этиленом, удается уменьшить толщину стенок в два раза и понизить массу корпусных деталей без ухудшения их надежности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]