Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Laboratornye_raboty_TsIP.doc
Скачиваний:
10
Добавлен:
01.05.2019
Размер:
2.38 Mб
Скачать
  1. Исследование факторов, вызывающих погрешности, методика расчёта погрешностей, экспериментальная проверка результатов расчёта

2.1 Анализ погрешностей пкн

Для определения всех факторов, которые вызывают погрешности, используем уравнение для ПКН с шунтом (16), которое про­логарифмируем, а затем продифференцируем по переменным Nx, NS и Nш. Считая приращения переменных малыми, заменим дифференциалы конечными приращениями. В результате получим уравнение относительной погрешности δПКН:

δПКН . (22)

Параметры Nx, NS и Nш определим относительно единичной проводимости g0, которую будем считать постоянной:

; . (22а)

Таким образом, нестабильность проводимостей Gx, GS и Gш будет определяться приращениями значений Nx, NS и Nш , которые при этом условии следует считать переменными.

Разделим погрешности в уравнении (22) на основании принципа су­перпозиции погрешностей [2], состоящего в том, что результирующая пог­решность есть сумма отдельных составляющих, причём каждая состав­ляющая может вычисляться при условии, что остальные погрешности равны нулю. Рассмотрим составляющие погрешности δПКН, полученные на этом основании.

2.2 Погрешность от нестабильности напряжения е0

Погрешность δЕ определяется первым слагаемым уравнения (22) :

δЕ . (23)

где Е0 – новое значение напряжения Е0 в результате воздействия дестабилизирующего фактора.

Погрешность может возникать из-за нестабильности напряжения источника Е0, а также в результате падения напряжения ∆Е= Ir на внутрен­нем сопротивлении r источника Е0 из-за проходящего тока I (рисунок 2б).

    1. Погрешность δш от нестабильности сопротивления шунта или внешней нагрузки.

Погрешность δш определится последним слагаемым уравнения (22), преобразованным на основании (22а):

,

где αш= – коэффициент нестабильности проводимости шунта (или внешней нагрузки).

Дестабилизирующим фактором, который вызывает погрешность δш, является приращение проводимости шунта ∆Gш. В этом случае приращение выходного напряжения ∆Uвых будет такое же, как при подключении шунта с проводимостью ∆Gш. Погрешность δш в данной работе не анализируется, так как влияние шунта подробно исследовалось в опыте 4, с другой стороны эта погрешность мала и ею можно пренебречь, поскольку обычно RS<<Rш.

2.4 Погрешность δR от нестабильности разрядных сопротивлений

Погрешность δR определяется вторым и третьим слагаемым уравнения (22):

. (24)

Так как одни и те же разрядные сопротивления могут входить в одно или оба слагаемых в уравнении (24), эти составляющие являются коррелированными и поэтому должны учитываться с их знаками.

Уравнение (24) относится к ПКН с шунтом. Если шунт отсутствует, следует положить Nш=0, тогда

. (25)

Погрешность возникает из-за собственной нестабильности раз­рядных сопротивлений (например, от изменения температуры), а также по причине непостоянства сопротивлений бесконтактных ключей, которые коммутируют разрядные сопротивления. Влияние этих факторов зависит от кодовой комбинации преобразуемого Nx.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]