
- •Технические средства контроля в системах управления технологическими процессами
- •Технические средства контроля в системах управления технологическими процессами Учебное пособие
- •1. Контроль давления
- •1.1. Определение понятия «давление», и соотношение между единицами давления
- •1.2. Классификация приборов для измерения давления по виду измеряемого давления
- •1.3. Классификация приборов для измерения давления по принципу действия
- •1.4. Классификация пружинных приборов для измерения давления по типу чувствительного элемента
- •1.5. Понятие «поверка» рабочего измерительного прибора
- •1.6. Классификация погрешностей измерения
- •1.6.1. Случайная погрешность
- •1.6.2. Систематическая погрешность
- •1.7. Абсолютная, относительная, приведённая погрешности измерительного прибора. Вариация показаний прибора
- •1.8. Класс точности приборов
- •1.9. Устройство, принцип действия и область применения приборов с упругими чувствительными элементами
- •1.10. Возможные источники систематических погрешностей приборов с упругим чувствительным элементом
- •1.11. Устройство и принцип действия грузопоршневого манометра мп -60
- •1.12. Устройство и принцип действия датчика давления «Сапфир-22 ди»
- •2. Контроль температуры
- •2.1. Термоэлектрические преобразователи
- •2.1.1. Принцип измерения температуры термоэлектрическим методом. Конструкция термопары
- •2.1.2. Типы стандартных термопар и диапазоны изменяемых температур для каждого их вида
- •2.1.3. Термопреобразователи с унифицированным токовым выходным сигналом. (тхау)
- •2.1.4. Применение термоэлектродных проводов и их свойства
- •2.1.5. Измерительные приборы применяемые комплексно с термопарами для измерения температуры
- •2.1.6. Принцип действия магнитоэлектрического милливольтметра
- •2.1.7. Схема, исключающая, влияние отклонений температуры свободного спая термопары на показания милливольтметра, электронного потенциометра
- •2.1.8. Сущность нулевого (компенсационного) метода измерения тэдс
- •2.1.9. Назначение всех элементов электронной функциональной схемы автоматического потенциометра
- •2.2. Термопреобразователи сопротивления.
- •2.2.1. Принцип работы термопреобразователя сопротивления
- •2.2.3. Отличие терморезисторов от металлических термопреобразователей сопротивления
- •2.2.5. Измерительные приборы, применяемые в комплекте с термопреобразователями сопротивления
- •2.2.6. Уравновешенные мосты
- •2.2.7. Преимущества трехпроводной схемы подсоединения термопреобразователя сопротивления
- •2.2.8. Автоматический уравновешенный мост. Назначение основных элементов схемы. Принцип работы прибора.
- •2.2.9. Неуравновешенные мосты.
- •3. Контроль расхода
- •3.1.Физический смысл понятий «расход» и «количество»
- •3.2. Приборы для измерения расхода и количества вещества
- •3.3. Основные принципы измерения расхода
- •3.4. Классификация приборов для измерения расхода и количества.
- •3.5. Градуировочная характеристика средств измерения
- •3.6. Сущность измерения расхода по методу переменного перепада давления
- •3.6.1. Типы сужающих устройств, регламентированные рд 50-213-80
- •3.6.2. Схема установки для определения расхода воды методом переменного перепада давлений
- •3.6.3. Источники возможных погрешностей комплекта – расходомера при измерении расхода методом переменного перепада давлений
- •3.7.2. Схема установки для определения расхода посредством расходомера постоянного перепада давления и его градуировки.
- •3.8. Кориолисовы (массовые) расходомеры.
- •4. Контроль уровня
- •4.1. Методы измерения уровня жидкости, применяемые в химической промышленности
- •4.2. Принцип работы гидростатического уровнемера. Дифманометр типа дм
- •4.3. Принцип работы емкостного уровнемера
- •4.5. Радарные измерители уровня
- •Библиографический список
- •Печатается в авторской редакции
2.2.6. Уравновешенные мосты
М
ост
(рис. 12) состоит
из двух постоянных сопротивлений R1
и R3,
сопротивления R2
(реохорда) и сопротивления термометра
Rt.
Сопротивления двух соединительных
проводов 2Rnp
прибавляются
к сопротивлению Rt.
В одну диагональ моста включен
источник постоянного тока (сухая
батарея), а в другую — нуль-прибор [1].
При
равновесии моста, которое достигается
перемещением движка по реохорду, ток в
диагонали моста Iо
= 0. В этом случае потенциалы на вершинах
моста b и d равны, ток от источника
питания I
разветвляется в вершине моста на две
ветви R1
и R3,
падение напряжения на сопротивлениях
R1
и R3
одинаково:
R1I1 = R3I3. (1)
Падения напряжения на плечах моста bc и cd также равны:
I2R2 = It(Rt + 2Rnp). (2)
Разделив равенство (1) на равенство (2), получим
.
(3)
При Iо = 0, Ii = I2 и Iз = It уравнение (3) примет вид
R1 (Rt + 2Rпр) = R2R3.
Сопротивление термометра будет составлять:
Если считать, что температура окружающей среды не изменяется, то 2Rпp будет постоянным. Тогда уравнение (4) примет вид
При изменении сопротивления Rt мост можно уравновесить изменением величины сопротивления реохорда R2.
Это была, так называемая, двухпроводная схема включения ТС в измерительный мост.
2.2.7. Преимущества трехпроводной схемы подсоединения термопреобразователя сопротивления
В
тех случаях, когда колебания температуры
среды, в которой находятся соединительные
провода, значительны и погрешность
при измерении может превысить
допустимую величину, применяют
трехпроводную систему подключения
термометра (рис. 13). При таком присоединении
сопротивление одного провода Rnp
прибавляется
к сопротивлению Rt,сопротивление
второго
провода - к переменному сопротивлению
R2
[1].
Уравнение равновесия моста принимает вид
Rt + Rпр = (R2 + Rпр)* (R3/R1).
В случае симметричного моста (R1 = R3,) получим:
Rt +Rпр = R2 + Rпр, т.е. Rt=R2.
Таким образом, нет необходимости при изменении температуры в помещении учитывать изменение Rпр.
2.2.8. Автоматический уравновешенный мост. Назначение основных элементов схемы. Принцип работы прибора.
В автоматических электронных уравновешенный мостах движок реохорда перемещается не вручную, а автоматически (рис. 14). Измерительная схема таких мостов питается как постоянным, так и переменным током. В автоматических мостах переменного тока решающее значение имеют активные сопротивления, поэтому выведенные выше соотношения для мостов постоянного тока сохраняются и для автоматических мостов переменного тока. Последние имеют ряд преимуществ перед мостами постоянного тока: измерительная схема питается от одной из обмоток силового трансформатора электронного усилителя, т. е. не требуется дополнительного источника питания (сухого элемента) и отпадает необходимость в применении вибрационного преобразователя. [1].
Существуют различные модификации автоматических уравновешенных мостов, однако принцип их работы одинаков. В качестве примера здесь рассматривается принципиальная схема электронного автоматического уравновешенного моста на переменном токе (рис. 14). Постоянные сопротивления R1, R2, R3 и R4 измерительной схемы выполнены из манганина, а реохорд Rp — из манганина или специального сплава. Измерительная схема питается переменным током напряжения 6,3 В.
Напряжение разбаланса на вершинах моста а и Ь подается на вход электронного усилителя. В нем оно усиливается до величины, достаточной для приведения в действие реверсивного электродвигателя РД. Этот двигатель, вращаясь в ту или другую сторону (в зависимости от знака разбаланса), через систему передач перемещает движок реохорда, уравновешивая измерительную схему моста, а также перемещает показывающую стрелку. Если мост находится в равновесии, то реверсивный двигатель не вращается, так как напряжение на вход электронного усилителя не подается.
Рис.
14. Принципиальная схема автоматического
уравновешенного моста, работающего на
переменном токе
Серийно изготовляемые электронные автоматические уравновешенные мосты могут быть использованы и при измерении температуры полупроводниковыми термосопротивлениями. В связи с большой разницей в характеристиках металлических термометров сопротивления и полупроводниковых термосопротивлений измерительную схему моста следует рассчитать.