Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
7_Digital video.doc
Скачиваний:
2
Добавлен:
29.04.2019
Размер:
62.46 Кб
Скачать

Technical overview

Digital video cameras come in two different image capture formats: interlaced and progressive scan. Interlaced cameras record the image in alternating sets of lines: the odd-numbered lines are scanned, and then the even-numbered lines are scanned, then the odd-numbered lines are scanned again, and so on. One set of odd or even lines is referred to as a "field", and a consecutive pairing of two fields of opposite parity is called a frame.

A progressive scanning digital video camera records each frame as distinct, with both fields being identical. Thus, interlaced video captures twice as many fields per second as progressive video does when both operate at the same number of frames per second.

Progressive scan camcorders are generally more desirable because of the similarities they share with film. They both record frames progressively, which results in a crisper image. They can both shoot at 24 frames per second, which results in motion strobing (blurring of the subject when fast movement occurs). Thus, progressive scanning video cameras tend to be more expensive than their interlaced counterparts. (Note that even though the digital video format only allows for 29.97 interlaced frames per second [or 25 for PAL], 24 frames per second progressive video is possible by displaying identical fields for each frame, and displaying 3 fields of an identical image for certain frames. For a more detailed explanation, see the adamwilt.com link.)

Standard film stocks such as 16 mm and 35 mm record at 24 frames per second. For video, there are two frame rate standards: NTSC, and PAL, which shoot at 30/1.001 (about 29.97) frames per second and 25 frames per second, respectively.

Digital video can be copied with no degradation in quality. No matter how many generations a digital source is copied, it will be as clear as the original first generation of digital footage.

Digital video can be processed and edited on an NLE, or non-linear editing station, a device built exclusively to edit video and audio. These frequently can import from analog as well as digital sources, but are not intended to do anything other than edit videos. Digital video can also be edited on a personal computer which has the proper hardware and software. Using an NLE station, digital video can be manipulated to follow an order, or sequence, of video clips.

More and more, videos are edited on readily available, increasingly affordable hardware and software. Even large budget films, such as Cold Mountain, have been edited entirely on Apple's Final Cut Pro.

Regardless of software, digital video is generally edited on a setup with ample disk space. Digital video applied with standard DV/DVCPRO compression takes up about 250 megabytes per minute or 13 gigabytes per hour.

Digital video has a significantly lower cost than 35 mm film, as the digital tapes can be erased and re-recorded multiple times. Although the quality of images can degrade minimally each time a section of digital video tape is viewed or re-recorded, as is the case with MiniDv tapes, the tape stock itself is very inexpensive — about $3 for a 60 minute MiniDV tape, in bulk, as of December, 2005. Digital video also allows footage to be viewed on location without the expensive chemical processing required by film. By comparison, 35 mm film stock costs about $1000 per minute, including processing.

Digital video is used outside of movie making. Digital television (including higher quality HDTV) started to spread in most developed countries in early 2000s. Digital video is also used in modern mobile phones and video conferencing systems. Digital video is also used for Internet distribution of media, including streaming video and peer-to-peer movie distribution.

Many types of video compression exist for serving digital video over the internet, and onto DVDs. Although digital technique allows for a wide variety of edit effects, most common is the hard cut and an editable video format like DV-video allows repeated cutting without loss of quality, because any compression across frames is lossless. While DV video is not compressed beyond its own codec while editing, the file sizes that result are not practical for delivery onto optical discs or over the internet, with codecs such as the Windows Media format, MPEG2, MPEG4, Real Media, the more recent H.264, and the Sorenson media codec. Probably the most widely used formats for delivering video over the internet are MPEG4 and Windows Media, while MPEG2 is used almost exclusively for DVDs, providing an exceptional image in minimal size but resulting in a high level of CPU consumption to decompress.

While still images can have any number of pixels the video community defines one standard for resolution after the other and notwithstanding the devices use incompatible resolutions and insist on their resolution and rescale a video several times from the sensor to the LCD. Anamorph still images are the result of technical limitations while anamorph videos can be result of standardization aberrations. As of 2007[update], the highest resolution demonstrated for digital video generation is 33 megapixels (7680 x 4320) at 60 frames per second ("UHDV"), though this has only been demonstrated in special laboratory settings. The highest speed is attained in industrial and scientific high speed cameras that are capable of filming 1024x1024 video at up to 1 million frames per second for brief periods of recording.