
- •Методы обнаружения и коррекции ошибок. Методы восстановления искаженных и потерянных кадров. Алгоритмы сжатия данных.
- •Методы обнаружения ошибок
- •Методы восстановления искаженных и потерянных кадров
- •Компрессия данных
- •Сети tcp/ip. Адресация в сетях tcp/ip. Типы адресов стека tcp/ip. Форматы ip адреса. Отображение ip адресов на локальные адреса.
- •Отображение ip-адресов на локальные адреса
- •Коммутация каналов на основе частотного мультиплексирования
- •Коммутация каналов на основе разделения времени
- •Обеспечение дуплексного режима работы на основе технологий fdm, tdm и wdm
- •Принципы маршрутизации. Алгоритмы маршрутизации. Протоколы маршрутизации.
- •Протоколы маршрутизации
- •Коммутация пакетов. Виртуальные каналы в сетях с коммутацией пакетов. Коммутация пакетов
- •Виртуальные каналы в сетях с коммутацией пакетов
- •Множественный доступ с контролем несущей и обнаружением конфликтов
- •Беспроводная передача данных. Беспроводные сети. Двухточечная связь. Связь одного источника и нескольких приемников. Связь нескольких источников и нескольких приемников.
- •Организация корпоративной сети
- •Транспортный уровень
- •Спутниковые каналы и типы спутниковых систем связи
- •Функции и характеристики концентраторов. Управление концентратором по протоколу snmp. Интеллектуальные функции коммутаторов.
- •Характеристики сетевых концентраторов
- •Функции концентраторов
- •Управление концентратором по протоколу snmp
- •Расширение спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum - fhss)
- •Прямое последовательное расширение спектра (Direct Sequence Spread Spectrum - dsss)
- •Пассивное сетевое оборудование
- •Сетевые адаптеры (Функции и характеристики сетевых адаптеров)
- •Беспроводные сети стандартов ieee 802.11 и 802.16. Топология беспроводных сетей стандартов ieee 802.11.
- •Краткие характеристики стандарта 802.16
- •Характеристики стандарта 802.16a:
- •Топологии беспроводных сетей Wi-Fi
- •Сети fddi и их основные характеристики. Отказоустойчивость технологии fddi.
- •Локальные вычислительные сети. Общая характеристика протоколов локальных сетей. Стандартная топология и разделяемая среда. Стек протоколов локальных сетей.
- •Общая характеристика протоколов локальных сетей
- •Технология Token Ring
- •Доступ с передачей токена
- •Уровень мас. Структура стандартов ieee 802.*. Уровень mac
- •Структура стандартов ieee 802
- •Рабочие группы
Организация корпоративной сети
При организации корпоративных сетей очень важен этап предварительного планирования топологии сети, нагрузки по сегментам сети, расчёт протяжённости кабельной системы, а также затратная часть на сетевую инфраструктуру и серверы, предоставляющие сервис в этой сети. От правильности начального планирования зависит производительность и масштабируемость всей сети в целом и её отдельных компонентов. Сеть скорее всего будет работать по Ethernet, а там, как известно используется протокол обнаружения коллизий.
После того, как вы набросали план вашей будущей сети и приобрели необходимое оборудование, нужно распределить адресное пространство. В разделе Настройка сети приводилось несколько ссылок, помогающих разобраться в тонкостях организации подсетей, работе с сетевыми масками и пр. Очень важным является следование RFC1918, которая регламентирует используемое для построения внутренних сетей адресное пространство. Напомним, что это блоки адресов: 10.0.0.0/8 для сетей класса A, 172.16.0.0/16—172.31.0.0/16 для сетей класса B, 192.168.0.0/16 для сетей класса C. Здесь после знака / указана битовая маска сети. Если вы не будете следовать этим рекомендациям, то у вас могут возникнуть сложности при подключении сети к Интернет.
Далее нужно выбрать из перечисленных выше вариантов сетевой блок, который будет удовлетворять размерам вашей сети. Как правило, в случае небольшой сети (до 254 машин), выбирают сеть 192.168.0.0/24. Для сети масштаба предприятия выбирают сеть класса А.
Введите организацию подсетей: адрес сети класса A может быть разбит на несколько (если не много) отдельных сетей.
Таким образом, разделение сети на две подсети приводит к тому, что образуются два адреса сети и два широковещательных адреса — увеличивается число “неиспользуемых” адресов интерфейсов; создание 4-х подсетей приведёт к образованию 8-и неиспользуемых адресов интерфейсов и т. д.
Фактически, самая маленькая пригодная для использования подсеть состоит из 4 IP-адресов:
Два используются для интерфейсов: один для маршрутизатора в этой сети, другой для единственной машины в этой сети.
Один адрес сети.
Один широковещательный адрес.
Если у вас в подсети один компьютер, то любые сетевые сообщения должны отправляться в другую подсеть. Этим будет заниматься маршрутизатор, на котором вы в таблицу маршрутизации прописываете пути в эти подсети. А на этом единственном компьютере в подсети вы указываете маршрутизатор как маршрут по умолчанию, или шлюз.
Сетевая маска позволяет разделить сеть на несколько подсетей. Сетевая маска для сети, не разделённой на подсети — это просто четвёрка чисел, которая имеет все биты в полях сети, установленные в 1 и все биты машины, установленные в 0.
Транспортный уровень
Транспортный уровень модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Протоколы транспортного уровня: ATP, CUDP, DCCP, FCP, IL и др.
Уровень 4, Транспортный, обеспечивает дополнительный уровень соединения — ниже Сеансового уровня. Транспортный уровень гарантирует доставку пакетов без ошибок, в той же последовательности, без потерь и дублирования. На этом уровне сообщения переупаковываются: длинные разбиваются на несколько пакетов, а короткие объединяются в один. Это увеличивает эффективность передачи пакетов по сети. На Транспортном уровне компьютера-получателя сообщения распаковываются, восстанавливаются в первоначальном виде, и обычно посылается сигнал подтверждения приема. Транспортный уровень управляет потоком, проверяет ошибки и участвует в решении проблем, связанных с отправкой и получением пакетов.
Сетевой уровень модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.
Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).
Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX, X.25 (частично этот протокол реализован на уровне 2), CLNP (сетевой протокол без организации соединений) и др.
Уровень 3, Сетевой уровень отвечает за адресацию сообщений и перевод логических адресов и имен в физические адреса. Одним словом, исходя из конкретных сетевых условий, приоритета услуги и других факторов здесь определяется маршрут от компьютера-отправителя к компьютеру-получателю. На этом уровне решаются также такие задачи и проблемы, связанные с сетевым трафиком, как коммутация пакетов, маршрутизация и перегрузки. Если сетевой адаптер маршрутизатора не может передавать большие блоки данных, посланные компьютером-отправителем, на Сетевом уровне эти блоки разбиваются на меньшие. А Сетевой уровень компьютера-получателя собирает эти данные в исходное состояние.
.
БИЛЕТ № 29