
- •Условные обозначения
- •Оглавление
- •5.1. Обнаружение дефектов роторных лопаток…………………………………105
- •5.2. Определение частот вращения роторов двухвального двигателя………...107
- •Введение
- •Семейство авиационных газотурбинных двигателей cfm56
- •1.1. История возникновения семейства двигателей cfm56
- •1.2. История развития и настоящее положение авиадвигателей семейства cfm56 на мировом рынке
- •1.2.1. Двигатель cfm56-2
- •1.2.2. Двигатель cfm56-3
- •1.2.3. Двигатель cfm56-5a
- •1.2.4. Двигатель cfm56-5b
- •1.2.5. Двигатель cfm56-5c
- •1.2.6. Двигатель cfm56-7b
- •1.3. Общие и отличительные особенности конструкции двигателей семейства cfm56. Назначение и эксплуатационно-технические характеристики
- •1.3.1. Двигатель cfm56-2
- •1.3.2. Двигатель cfm56-3
- •1.3.3. Двигатель cfm56-5a
- •1.3.4. Двигатель cfm56-5b
- •1.3.5. Двигатель cfm56-5c
- •1.3.6. Двигатель cfm56-7b
- •1.4. Конструкция двигателя cfm56-5b
- •1.4.1. Общее представление о двигателе
- •1.4.2. Главный модуль вентилятора
- •1.4.3. Главный модуль газогенератора
- •1.4.4. Главный модуль турбины низкого давления
- •1.4.5. Главный модуль вспомогательного привода
- •1.4.6. Опоры роторов
- •1.4.7. Смотровые порты
- •1.4.8. Дренажная система
- •1.5. Программа tech56
- •1.5.1. Цели и организация работ по программе tech56
- •1.5.2. Результаты работ по программе tech56
- •Техническая эксплуатация авиационных газотурбинных двигателей семейства cfm56
- •Условия работы и факторы, влияющие на техническое состояние двигателя
- •Виды технического состояния двигателя
- •Стратегия программы то и р, применяемая к двигателям семейства cfm56
- •Проблемы, возникающие при эксплуатации «по состоянию»
- •Характерные повреждения авиационных газотурбинных двигателей семейства cfm56
- •Типичные повреждения элементов конструкции
- •Распределение и характер повреждений элементов конструкции гтд по системам и узлам и их причины возникновения
- •Компрессор
- •Камера сгорания и топливные форсунки
- •Турбина
- •Подшипники опор роторов
- •Детали приводов
- •Трубопроводы
- •Последствия повреждений элементов конструкции
- •Методы, средства контроля и диагностирования технического состояния, применяемые в настоящее время в эксплуатации авиационных газотурбинных двигателей семейства cfm56
- •Диагностирование по изменению рабочих параметров
- •Визуально-оптический метод диагностирования
- •Диагностирование по наличию продуктов износа в масле
- •Диагностирование по концентрации продуктов износа в масле
- •Диагностирование по параметрам вибрации
- •Перспективный метод регистрации повреждений элементов проточной части авиационных газотурбинных двигателей семейства cfm56
- •Обнаружение дефектов роторных лопаток
- •Определение частот вращения роторов двухвального двигателя
- •Вибрации роторных лопаток
- •Измерение радиальных зазоров
- •Прохождение через проточную часть посторонних предметов
- •Выводы и рекомендации
- •Список использованной литературы
- •Приложения
1.2.2. Двигатель cfm56-3
Авиационный газотурбинный двигатель CFM56-3 был разработан специально для самолётов семейства Boing 737 второго поколения: 300/400/500 и является производным от двигателя CFM56-2. Развиваемое им осевое усилие колеблется от 9,2 до 11,7 т .
Комбинация «двигатель-планер» поступила на коммерческие перевозки в 1984 году и быстро стала одним из бестселлеров…так же, как и преемник, Boing 737NG. Сегодня разработчики CFM предлагают комплекты обновления для двигателя CFM56-3, которые продлевают его жизненный цикл и снижают расходы на техническое обслуживание.
Турбовентиляторный двигатель CFM56-3 является первым усовершенствованным двигателем семейства, который был разработан специально для удовлетворения потребностей ближне - и среднемагистральных самолётов семейства Boing 737. Сертифицирован двигатель по FAA и DGAC в 1984 году. Через двадцать месяцев после CFM56-2 начал осуществлять коммерческие перевозки. Этот двигатель демонстрирует улучшенную на 20% топливную эффективность по сравнению с предыдущими двигателями малой степени двухконтурности.
Двигатель CFM56-3 сохранил в себе газогенератор высокого давления и турбину низкого давления от предыдущего двигателя CFM56-2. По запасным частям, используемому материалу и инструменту двигатель на 84% и 60% идентичен своему предшественнику. В декабре 1999 года последняя поставка двигателей CFM56-3, была отгружена компании Boing для их установки на самолёты Boing 737 Classic и Boing 737-400.
В начале 2001 года двигатель CFM56-3C, эксплуатирующийся в авиакомпании Malev, установил свой новый рекорд по наработке в часах и циклах до первого снятия с крыла, который составлял наработку в более чем 35 000 часов и 14 000 циклов. Когда фирма Boing выбрала этот двигатель в качестве силовой установки для своих самолётов серии 737-300/-400/-500, обе компании оптимистично предсказали, что они продадут около 400 самолётов; 4 496 двигателей и ещё 1 989 самолётов в будущем, а двигатель CFM56-3 силовой установки Boing 737 станет историей для книги рекордов.
Таблица 2
Хронология событий
|
|
Заключение контракта |
Март 1981 |
Готовность первого тестового двигателя |
Апрель 1982 |
Первый полёт двигателя на Boing 707 FTB |
Январь 1983 |
Сертифицирован |
Январь 1984 |
Ввод в эксплуатацию Boing 737-300 |
Декабрь 1984 |
Ввод в эксплуатацию Boing 737-400 |
Сентябрь 1988 |
Ввод в эксплуатацию Boing 737-500 |
Март 1990 |
Поставка последней партии CFM56-3 в фирму Boing |
Декабрь 1999 |
Достижение мирового рекорда по наработке 38 736 часов до первого снятия с крыла |
Начало 2001 |
1.2.3. Двигатель cfm56-5a
Авиационный газотурбинный двигатель CFM56-5A входит в силовую установку, которой оснащались вступающие на рынок узкофюзеляжные самолёты Airbus A320. Начало эксплуатации датируется 1988 годом, и в настоящее время эксплуатируется более 1100 двигателей с общей наработкой более чем 40 млн. лётных часов. Развиваемая им тяга составляет от 11 до 13,3 т. Двигатель CFM56-5A, работающий в диапазоне тяг от 11 до 11,8 т, хорошо оптимизирован для укороченных самолётов Airbus A319.
Опыт эксплуатации двигателя CFM56-3, который накопил более девяти миллионов лётных часа перед тем, как CFM56-5A вступил в эксплуатацию, сыграл важную для последнего роль. Он характеризуется улучшенными параметрами термодинамического цикла и оснащён трёхмерно-спроектированным вентилятором, электронно-цифровой системой управления с полной ответственностью (FADEC), которая обеспечивает эффективное взаимодействие систем двигателя и самолёта. Удельный расход топлива двигателя снижен на 10-11%, по сравнению с его предшественниками. В результате чего, для исполнения тех же миссий воздушному судну требуется на 15-17% меньше топлива. Несмотря на его повышенные, по сравнению с нормами FAA и EPA, шум и эмиссию вредных веществ, двигатель имеет хороший уровень надёжности вылета: менее одной задержки или отмены за 1600 вылетов по причине неисправности двигателя.
Таблица 3
Хронология событий
|
|
Заключение контракта |
Сентябрь 1984 |
Готовность первого тестового двигателя |
Январь 1986 |
Первый тестовый полёт двигателя на Boing 707 FTB |
Июнь 1986 |
Сертифицирован |
Август 1987 |
Введён в эксплуатацию |
Апрель 1988 |