Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ лекции(5-13).doc
Скачиваний:
1
Добавлен:
28.04.2019
Размер:
350.21 Кб
Скачать

Лекция 6.

Открытые системы. Самоорганизация в открытых системах.

Открытые системы обмениваются с окружающей средой энергией, веществом и информацией. Все реальные системы – открытые. В неорганической природе они обмениваются с внешней средой энергией и веществом. В социальных и гуманитарных системах к этому добавляется обмен информацией. В биологических системах информационный обмен осуществляется, в частности, передачей генетической информации.

Понятие закрытой или изолированной системы представляет собой абстракцию, слишком упрощающую и огрубляющую действительность, так как невозможно найти системы, не взаимодействующие с окружающей средой. Поэтому в новой термодинамике появилось понятие открытой системы, способной обмениваться с окружающей средой веществом, энергией и информацией.

Одно из первых определений открытой системы принадлежит выдающемуся физику Э.Шредингеру: средство, при помощи которого организм поддерживает себя постоянно на достаточно высоком уровне упорядоченности (равно на достаточно низком уровне энтропии), в действительности состоит в непрерывном извлечении упорядоченности из окружающей среды.

Взаимодействуя со средой, система заимствует извне новое вещество и выводит в окружающую среду отработанную энергию. В результате эволюции система постоянно производит энтропию, характеризующую степень беспорядка в системе. Но, в отличие от закрытых систем, энтропия не накапливается в ней, а удаляется в окружающую среду. Использованная, отработанная энергия рассеивается в окружающей среде. Такого рода материальные структуры, способные рассеивать энергию, называются диссипативными. Открытая система не может быть равновесной. С поступлением новой энергии неравновесность в системе возрастает. В конечном счете прежняя взаимосвязь между элементами системы, которая определяет ее структуру, разрушается. Между элементами системы возникают новые связи, которые приводят к изменению структуры. Так схематично можно представить процессы самоорганизации в открытых системах. Немецкий физик Г. Хакен, изучая процессы самоорганизации, назвал новое направление исследований синергетикой (в переводе с греческого: совместное действие или взаимодействие).

Классическая и неравновесная термодинамика.

Известно, что для широкого класса необратимых явлений потоки являются линейными функциями термодинамических сил. Под термодинамическими силами понимают градиент соответствующих величин, например, в явлениях переноса.

Ji = ∑Lijxj. Коэффициенты Lij называются феноменологическими или кинетическими коэффициентами. Они могут быть любыми функциями параметров состояния (температуры, давления, состава и т.д.), однако они не зависят от Ji и xj.

В нелинейной термодинамике необратимых процессов в термодинамических уравнениях движения нельзя ограничиваться линейной связью, нужно учитывать члены порядка выше первого и принимать во внимание зависимость кинетических коэффициентов от термодинамических сил.

Процессы самоорганизации в химических системах изучались бельгийскими учеными во главе с Пригожиным. Модели, предложенные им, легли в основу новой, неравновесной термодинамики. Изучение открытых систем – одно из перспективных направлений термодинамики завтрашнего дня. Заслугой неравновесной термодинамики является установление того факта, что самоорганизация является общим свойством открытых систем. Неравновесность служит источником упорядоченности.