Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_voprosy_po_fizike.doc
Скачиваний:
3
Добавлен:
27.04.2019
Размер:
665.6 Кб
Скачать

31. Уравнение Шредингера. Волновая функция. Физический смысл волновой функции.

Уравнение Шредингера

      Общее временное уравнение Шредингера, позволяющее определить в любой момент времени волновую функцию   для частицы массы  , движущейся в силовом поле  , описываемом скалярной потенциальной функцией  , имеет вид

.

      Здесь   - мнимая единица, а   - рационализированная постоянная Планка. Стандартным символом    обозначен дифференциальный оператор Лапласа, который в декартовой системе координат имеет вид

.

     

Волновая функция

    Волновая функция (или вектор состояния) – комплексная функция, описывающая состояние квантовомеханической системы. Её знание позволяет получить максимально полные сведения о системе, принципиально достижимые в микромире. Так с её помощью можно рассчитать все измеряемые физические характеристики системы, вероятность пребывания её в определенном месте пространства и эволюцию во времени. Волновая функция может быть найдена в результате решения волнового уравнения Шредингера.      Волновая функция ψ(x, y, z, t) ≡ ψ(x,t) точечной бесструктурной частицы является комплексной функцией координат этой частицы и времени. Простейшим примером такой функции является волновая функция свободной частицы с импульсом   и полной энергией Е (плоская волна)

.

Физический смысл волновой функции

В координатном представлении волновая функция   зависит от координат (или обобщённых координат) системы. Физический смысл приписывается квадрату её модуля  , который интерпретируется как плотность вероятности   (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами   в момент времени  :

.

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией  , можно рассчитать вероятность   того, что частица будет обнаружена в любой области пространства конечного объема       

32.(74) Фундаментальные физические взаимодействия

Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействияэлементарных частиц и составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

гравитационного, электромагнитного ,сильного, слабого

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.

Гравита́ция (Притяжение, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. Гравитация является самым слабым из четырех типов фундаментальных взаимодействий. В квантовом пределе гравитационное взаимодействие должно описываться квантовой теорией гравитации, которая ещё полностью не разработана.

Электромагни́тное взаимоде́йствие — одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающимиэлектрическим зарядом[1]. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

Си́льное ядерное взаимоде́йствие (цветово́е взаимоде́йствие, я́дерное взаимоде́йствие) — одно из четырёх фундаментальных взаимодействий в физике. В сильном взаимодействии участвуют кварки и глюоны и составленные из них частицы, называемые адронами (барионы и мезоны). Оно действует в масштабах порядка размера атомного ядра и менее, отвечая за связь между кварками в адронах и за притяжение между нуклонами (разновидность барионов — протоны и нейтроны) в ядрах.

Слабое взаимодействие, или слабое ядерное взаимодействие — одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного. Слабое взаимодействие является короткодействующим — оно проявляется на расстояниях, значительно меньших размера атомного ядра (характерный радиус взаимодействия 10−18 м

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]