
- •Классификация, критерии оценки и структура ос.
- •Критерии оценки ос
- •Надежность
- •Эффективность
- •Удобство
- •Масштабируемость
- •Способность к развитию
- •Мобильность
- •Основные функции и структура ос
- •Классификация и архитектура внешних устройств. Классификация периферийных устройств и их архитектура
- •Способы организации ввода/вывода. Синхронный и асинхронный ввод/вывод. Архитектура подсистемы ввода/вывода
- •Ввод/вывод по опросу и по прерываниям
- •Активное и пассивное ожидание
- •Синхронный и асинхронный ввод/вывод
- •Буферизация и кэширование.
- •Сглаживание неравномерности скоростей процессов
- •Распараллеливание ввода и обработки
- •Согласование размеров логической и физической записи
- •Редактирование при интерактивном вводе
- •Кэширование дисков
- •Опережающее чтение.
- •Драйверы устройств. Типовая структура драйвера.
- •Уровни доступа к устройствам в ms-dos. Драйверы устройств ms-dos.
- •Драйверы устройств в ms-dos
- •Управление символьными устройствами в ms-dos. (На примере клавиатуры) Управление символьными устройствами
- •Управление блочными устройствами в ms-dos. (Структура диска) Управление блочными устройствами Структура диска
- •Разделы и логические тома
- •Управление устройствами в Windows и unix. Управление устройствами в Windows Драйверы устройств в Windows
- •Управление устройствами в unix Драйверы устройств в unix
- •Устройство как специальный файл
- •Характеристики файлов и архитектура файловых систем.
- •Размещение файлов.
- •Разделение файлов между процессами. Разделение файлов между процессами
- •Файловая система fat. Структуры данных на диске, создание и удаление файлов. Файловая система fat и управление данными в ms-dos Общая характеристика системы fat
- •Структуры данных на диске
- •Создание и удаление файла
- •Работа с файлами в ms-dos. Хэндлы. Внутренние структуры данных подсистемы управления данными (sft, jft). Работа с файлами в ms-dos. Системные функции.
- •Доступ к данным
- •Структуры данных в памяти
- •Архитектура файловой системы unix.
- •Жесткие и символические связи
- •Монтируемые тома
- •Типы и атрибуты файлов
- •Управление доступом к файлам в unix. Управление доступом
- •Структуры данных файловой системы unix.
- •Развитие файловых систем unix. Развитие файловых систем unix
- •Особенности файловой системы ntfs. Особенности файловой системы ntfs
- •Структуры дисковых данных
- •Главная таблица файлов
- •Атрибуты файла
- •Доступ к данным в Windows. Доступ к данным
- •Защита данных в Windows. Защита данных
- •Аутентификация пользователя
- •Дескриптор защиты
- •Процессы и ресурсы. Квазипараллельное выполнение процессов. Понятия процесса и ресурса
- •Квазипараллельное выполнение процессов
- •Состояния процесса. Состояния процесса
- •Вытесняющая и невытесняющая многозадачность. Вытесняющая и невытесняющая многозадачность
- •Дескриптор и контекст процесса. Реентерабельность системных функций. Дескриптор и контекст процесса
- •Реентерабельность системных функций
- •Дисциплины диспетчеризации и приоритеты процессов. Дисциплины диспетчеризации и приоритеты процессов
- •Изоляция и взаимодействие процессов. Проблема взаимного исключения. Изоляция процессов и их взаимодействие
- •Проблема взаимного исключения процессов
- •Двоичные семафоры Дейкстры. Средства взаимодействия процессов. Двоичные семафоры Дейкстры
- •Средства взаимодействия процессов
- •Целочисленные семафоры
- •Семафоры с множественным ожиданием
- •Сигналы
- •Сообщения
- •Общая память
- •Программные каналы
- •Проблема тупиков. Проблема тупиков
- •Процессы и нити в Windows.
- •Планировщик процессов в Windows. Планировщик Windows
- •Синхронизация нитей и функции ожидания в Windows. Синхронизация нитей. Способы синхронизации.
- •Объекты синхронизации и функции ожидания
- •Объекты синхронизации в Windows. Критические секции. Типы объектов синхронизации
- •Критические секции
- •Механизм обмена сообщениями в Windows.
- •Жизненный цикл процесса в unix. Группы процессов. Жизненный цикл процесса
- •Группы процессов
- •Программные каналы
- •Сигналы
- •Интерпретатор команд shell
- •Виртуальные и физические адреса
- •Распределение памяти без использования виртуальных адресов Настройка адресов
- •Распределение с фиксированными разделами
- •Распределение с динамическими разделами
- •40. Сегментная и страничная организация памяти. Сегментная организация памяти
- •Страничная организация памяти
- •Управление памятью в Windows Структура адресного пространства
- •Регионы
- •Отображение исполняемых файлов
- •Файлы, отображаемые на память
- •Стеки и кучи
Группы процессов
При входе пользователя в систему для него создается процесс-оболочка, являющийся предком всех других процессов этого пользователя. Этот процесс становится лидером группы порожденных им процессов. В качестве идентификатора группы принимается идентификатор (pid) ее лидера. Тот терминал, с которого пользователь вошел в систему, становится управляющим терминалом группы. Это может быть как локальный терминал компьютера, на котором работает система, так и удаленный терминал, с которого был выполнен вход в систему по сети.
Любой процесс может покинуть свою группу и объявить себя лидером новой группы, к которой будут относиться его потомки. Одна из групп является текущей (foreground), остальные группы —фоновыми (background). Процессы текущей группы могут получать ввод с управляющего терминала.
Понятие группы процессов играет важную роль в ряде ситуаций при работе системы. Например, если пользователь нажимает Ctrl+C, то всем процессам текущей группы посылается сигнал о необходимости завершения. При разрыве соединения с терминалом подобный сигнал посылается всем процессам, для которых этот терминал являлся управляющим.
Процесс может, создав собственную группу, затем «открепиться» от управляющего терминала. Такой процесс, называемый в UNIX «демоном», теряет возможность вести диалог с пользователем, но зато он не будет завершаться, когда пользователь закончит сеанс работы с системой. Демоны в UNIX выполняют обычно общесистемные задачи, такие, как управление печатью, получение и отправка почты, автоматический запуск процессов в заранее заданные моменты времени и т.п.
Программные каналы и сигналы в UNIX.
Программные каналы
Одним из «фирменных» изобретений UNIX, впоследствии позаимствованных другими ОС, является понятие программного канала или «трубопровода» (pipe), позволяющего выполнять обмен данными между процессами с помощью тех же системных вызовов, которые используются для чтения/записи данных при работе с файлами и с периферийными устройствами.
Программные каналы могут быть безымянными или именованными. Для создания безымянного канала процесс должен использовать системный вызов pipe, которая возвращает массив из двух элементов, содержащих хэндл для чтения из канала и хэндл для записи в канал. После этого для работы с каналом можно использовать обычные функции чтения из файла и записи в файл, указывая соответствующие хэндлы канала. Как правило, процесс, создавший канал, затем порождает двух потомков, из которых один будет выполнять запись в канал, а другой — чтение (напомним, что при создании процесса он получает копии всех хэндлов, открытых родителем). Не исключена также возможность использования канала несколькими процессами, каждый из которых может, в принципе, как записывать, так и читать данные.
Данные, записываемые в канал, буферизуются системой в памяти и затем могут быть прочитаны функциями чтения из канала. Если в канале нет данных, то функция чтения блокирует вызвавший ее процесс, пока другой процесс не запишет данные в канал.
Если все процессы закрыли хэндлы записи в канал (то есть, нет шансов, что в канал будут помещены еще какие-нибудь данные), то процесс-читатель, выбрав все данные, которые еще оставались в канале, прочтет затем признак конца файла.
Хуже, если закрыты все хэндлы чтения, а какой-нибудь процесс пытается выполнить запись данных, которые некому будет прочитать. В этом случае система посылает процессу сигнал об ошибке работы с каналом.
Использование безымянных каналов имеет одно ограничение: все процессы, работающие с каналом, должны быть потомками процесса, создавшего канал. Для передачи данных между неродственными процессами можно использовать именованные каналы, называемые также каналами FIFO. Такой канал создается системным вызовом mknod, при этом указывается путь и имя канала, как при создании файла. Имена каналов хранятся в каталогах файловой системы UNIX наравне с именами обычных и специальных файлов. Чтобы открыть канал для чтения или для записи, используется обычный системный вызов open с указанием требуемого режима доступа, как при открытии файла.