
- •Цели и задачи курса. Комплексная микроминиатюризация эа.
- •Уровни функционально-конструктивной сложности. Требования к современным конструкциям и их взаимосвязь с производством.
- •3. Элементная база и ее влияние на конструкцию мэа. Выбор конструктивно-компоновочной схемы и методов монтажа электронной аппаратуры.
- •4. Корпусные имс. Государственные, отраслевые и международные стандарты. Конструкционные материалы.
- •5. Конструктивные исполнения бескорпусной элементной базы.
- •6 Компьютерно-интегрированные технологии проволочного микромонтажа и монтажа сбис с организованными выводами в производстве эвс.
- •7. Констуктивно-технологические особенности сборки и монтажа бескорпусных микросхем на гибких полиимидных носителях.
- •8. Коммутационные системы микросборок и ячеек. Конструктивные типы многослойных жёстких и гибких плат, оснований и технология их производства.
- •9. Конструктивные и технологические особенности изготовления мпп.
- •10. Конструктивные и технологические особенности изготовления мккп.
- •11.Многокристальные модули. Конструкция и технология производства мкм без сварных и паяных соединений. Трехмерные конструкции и технологии производства
- •12. Конструктивно-технологические методы обеспечения эффективного теплостока от кристаллов мкм.
- •15. Способы образования электрических соединений.
- •16. Микросварные соединения.
- •17. Физико-химические основы микросварки.
- •18. Технологические особенности, напряженно-деформированное состояние и факторы прочности.
- •19. Паяные соединения. Физико-химические основы пайки.
- •Особенности и способы пайки. Бесфлюсовая пайка.
- •Конструктивы и производственные особенности получения непаяных соединений (накрутка, контактолы, анизотропные ленты, press-fit-технология).
- •23. Поверхностный монтаж. Пайка оплавлением дозированного припоя в парогазовой среде.
- •24. Поверхностный монтаж. Пайка ик-нагревом и лазерным излучением.
- •25. Припойные пасты, теплоносители, очистители, защитные покрытия.
- •Трафаретный метод нанесения припойной пасты.
- •Диспенсорный метод нанесения припойной пасты
- •Пути реализации бессвинцовой технологии монтажа в соответствии с директивой Евросоюза rohs.
- •27. Виды дефектов в паяных соединениях.
- •Межъячеечный и межблочный монтаж. Жгуты, кабели, шлейфы. Особенности крепления конструкций. Формообразование конструкционных элементов.
- •Герметизация компонентов и рэа. Способы контроля герметичности.
- •Контроль качества герметизации
Контроль качества герметизации
Наиболее точным является радиоактивный метод. При испытании с помощью счетчиков регистрируется интенсивность гамма-излучения газа, вытекающего из корпуса. Вследствие сложности и высокой стоимости этот метод используется только в экспериментальном производстве.
Масс-спектрометрический метод основан на обнаружении гелиевым течеискателем гелия, предварительно введенного в корпус прибора. Применение гелия обусловлено его высокой проникающей способностью (малые размеры молекул). Чувствительность метода определяется чувствительностью течеискателя. Высокая проникающая способность гелия затрудняет обнаружение больших течей, так как к моменту испытания гелий может полностью вытечь из корпуса. Поэтому для образцов, подлежащих испытанию, целесообразно вводить гелий после герметизации, но непосредственно перед испытанием.
При проверке герметичности вакуум-жидкостным методом микросхемы помещают в емкость с керосином или уайт-спиритом, над которым создается разрежение Вытекающий из корпуса газ (непрерывная струйка пузырьков) позволяет определить не только интенсивность, но и место расположения течи
Компрессионно-термический метод отличается от предыдущего тем, что испытуемые микросхемы погружают в нагретое масло. При этом давление газа внутри корпуса повышается и чувствительность метода несколько увеличивается