- •Динамика точки. Основные понятия и определения.
- •Законы динамики
- •Дифференциальные уравнения движения точки
- •Задачи динамики для свободной и несвободной материальной точки. (Первая и вторая задачи динамики)
- •Теория колебаний Классификация сил в тории колебаний. Свободные, затухающие и вынужденные колебания.
- •Вынужденные колебания.
- •Тогда, учитывая обозначение, приведем уравнение движения к виду
- •Таким образом, искомое частное решение будет
- •Меры Механического движения Кинетическая энергия
- •Количество движения
- •Момент количества движения (кинетический момент)точки и системы Главный момент количеств движения системы.
- •Кинетическая энергия тела при различных видах его движения
- •Выражение кол-ва движения системы через ее массу и скорость центра масс
- •Кинетический момент вращающегося тела относительно оси вращения
- •Меры действия сил Элементарная работа
- •Работа силы на конечном перемещении
- •Теорема о работе равнодействующей
- •Вычисление работы в некоторых частных случаях: работа постоянной силы на прямолинейном перемещении, работа сил тяжести
- •Работа силы, приложено к вращающемуся телу
- •Работа силы трения при качении без скольжения
- •Работа внутренних сил
- •Мощность силы
- •Элементарный и полный импульс силы
- •Общие теоремы динамики Теорема об изменении кинетической энергии, теорема мощностей
- •Мощность.
- •Теорема об изменении кол-ва движения Теорема об изменении количества движения точки
- •Количество движения системы.
- •Беря от обеих частей производную по времени, получим
- •Теорема об изменении количества движения.
- •Законы сохранения кол-ва движения
- •Теорема об изменении кинетического момента системы Главный момент количеств движения системы.
- •Теорема об изменении главного момента количеств движения системы (теорема моментов).
- •Законы сохранения – следствия
- •Принцип д’Аламбера Принцип Даламбера для матер точки и механич системы
- •Главный вектор и главный момент сил инерции
Законы сохранения кол-ва движения
Из теоремы об изменении количества движения системы можно получить следующие важные следствия:
1)
Пусть сумма всех внешних сил, действующих
на систему, равна нулю:
Тогда
из уравнения
следует,
что при этом
.
Таким образом, если
сумма всех внешних сил, действующих на
систему, равна нулю, то вектор количества
движения системы будет постоянен по
модулю и направлению.
2) Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например Оx) равна нулю:
Тогда
из уравнения
следует,
что при этом
.
Таким образом, если
сумма проекций всех действующих внешних
сил на какую-нибудь ось равна нулю, то
проекция количества движения системы
на эту ось есть величина постоянная.
Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить суммарное количество движения системы не могут. Рассмотрим некоторые примеры:
а) Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить суммарное количество движения системы. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т.е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).
б) Работа гребного винта (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды как внутренние не могут изменить суммарное количество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы останется равным нулю, так как оно было нулем до начала движения.
Аналогичный эффект достигается действием весел или гребных колес.
в) Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла реактивного двигателя). Действующие при этом силы давления будут силами внутренними, и они не могут изменить суммарное количество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, направленное назад, то ракета получает при этом соответствующую скорость движения вперед.
Теорема об изменении кинетического момента системы Главный момент количеств движения системы.
Главным моментом количеств движения (или кинетическом моментом) системы относительно данного центра О называется величина , равная геометрической сумме моментов количеств движения всех точек системы относительно этого центра.
Аналогично определяются моменты количеств движения системы относительно координатных осей:
, , .
При этом представляют собою одновременно проекции вектора на координатные оси.
Подобно тому, как количество движения системы является характеристикой ее поступательного движения, главный момент количеств движения системы является характеристикой вращательного движения системы.
Чтобы уяснить механический смысл величины и иметь необходимые формулы для решения задач, вычислим кинетический момент тела, вращающегося вокруг неподвижной оси (рис.25). При этом, как обычно, определение вектора сводится к определению его проекций .
Найдем сначала наиболее важную для приложений формулу, определяющую величину Кz, т.е. кинетический момент вращающегося тела относительно оси вращения.
Для любой точки тела, отстоящей от оси вращения на расстоянии , скорость . Следовательно, для этой точки . Тогда для всего тела, вынося общий множитель за скобку, получим
Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z. Окончательно находим
Таким образом, кинетический момент вращающегося тела относительно оси вращения равен произведению момента инерции тела относительно этой оси на угловую скорость тела.
Если система состоит из нескольких тел, вращающихся вокруг одной и той же оси, то, очевидно, будет
Легко видеть аналогию между формулами и : количество движения равно произведению массы (величина, характеризующая инертность тела при поступательном движении) на скорость; кинетический момент равен произведению момента инерции (величина, характеризующая инертность тела при вращательном движении) на угловую скорость.
