
- •Пособие по химии
- •Поступающих в Военно-медицинскую академию
- •Предисловие
- •Раздел I. Общая химия
- •Глава 1. Основные понятия и законы химии
- •Обучающие задачи Моль. Молярная масса
- •Расчеты по химическим формулам. Массовая доля. Вывод формул соединений
- •Законы идеальных газов
- •Расчеты по химическим уравнениям
- •1) Из 80 г оксида меди образуется 64 г меди,
- •2) C 80 г оксида меди реагирует 1 моль водорода,
- •56 Г Fe (1 моль) выделяют 2 г h2
- •24 Г Mg (1 моль) выделяют 2 г h2
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 2. Строение атома. Периодический закон и периодическая система д.И. Менделеева
- •2.1. Строение атома
- •2) В случае равных сумм сначала заполняются орбитали с меньшим значением n.
- •2.2. Периодический закон и периодическая система элементов
- •Обучающие задачи
- •Задания для самостоятельной работы
- •Глава 3. Химическая связь
- •3.1. Ковалентная связь
- •Обучающие задачи
- •3.2. Ионная связь
- •3.3. Металлическая связь
- •3.4.Водородная связь
- •Задания для самостоятельной работы
- •Глава 4. Валентность и степень окисления
- •4.1. Понятие валентности
- •4.2. Степень окисления
- •Обучающие задачи
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 5. Классификация химических реакций
- •Задания для самостоятельной работы
- •Глава 6. Окислительно-восстановительные реакции
- •6.1. Основные понятия и определения
- •6.2. Методы составления уравнений окислительно-восстановительных реакций
- •6.3. Реакции электролиза
- •Обучающие задачи
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 7. Растворы. Теория электролитической диссоциации
- •7.1. Основные понятия
- •7.2. Ионные уравнения реакций
- •Обучающие задачи
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 8. Химическая кинетика
- •8.1. Понятие скорости химической реакции
- •8.2. Влияние концентрации на скорость реакции
- •8.3. Влияние температуры на скорость реакции
- •8.4. Энергия активации
- •8.5. Влияние катализатора на скорость реакции
- •Обучающие задачи
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 9. Химическое равновесие
- •9.1. Понятие о химическом равновесии
- •9.2. Способы смещения химического равновесия
- •Обучающая задача
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 10. Классификация неорганических соединений
- •10.1. Оксиды
- •10.2. Гидроксиды
- •10.2.1. Основания
- •I. Получение щелочей.
- •10.2.2. Кислоты
- •10.2.3. Амфотерные гидроксиды
- •10.3. Соли
- •Обучающие задачи
- •Задания для самостоятельной работы
- •Ответы:
- •Раздел II. Неорганическая химия
- •Часть I. Химия металлов
- •Глава 11. Общая характеристика металлов
- •I. Взаимодействие с неметаллами.
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 12. Химия щелочных металлов
- •I. Взаимодействие с неметаллами.
- •II. Взаимодействие со сложными веществами.
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 13. Химия щелочноземельных металлов
- •13.1. Общая характеристика элементов главной подгруппы II группы
- •13.2. Кальций
- •Простое вещество
- •I. Взаимодействие с простыми веществами.
- •II. Взаимодействие со сложными веществами.
- •Cоединения кальция
- •Ca(oh)2 - гидроксид кальция(II), гашеная известь
- •Гидрид кальция CaH2 и карбид кальция СаС2
- •13.3. Жесткость воды и способы ее устранения
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 14. Химия алюминия Простое вещество
- •II. Взаимодействие cо сложными веществами.
- •Оксид алюминия Al2o3
- •Гидроксид алюминия Al(oh)3
- •Cоли алюминия
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 15. Химия железа Простое вещество
- •II. Взаимодействие со сложными веществами.
- •Соединения железа(II) Оксид железа(II)
- •Гидроксид железа(II)
- •Соединения железа(III) Оксид железа(III)
- •Гидроксид железа(III)
- •Cоли железа(III)
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 16. Химия хрома и марганца
- •16.1. Хром
- •Простое вещество
- •Cоли хрома(III)
- •Соединения хрома(VI) Оксид хрома(VI), хромовый ангидрид
- •Кислоты и соли хрома(VI)
- •16.2. Марганец
- •Простое вещество
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 17. Химия меди и цинка
- •17.1. Медь
- •Простое вещество
- •I. Взаимодействие с простыми веществами.
- •II. Взаимодействие со сложными веществами.
- •Cоединения меди(I)
- •Соединения меди(II) Оксид меди(II)
- •Гидроксид меди(II)
- •Cоли меди(II)
- •17.2. Цинк
- •Простое вещество
- •Соединения цинка Оксид цинка ZnO
- •Гидроксид цинка Zn(oh)2
- •Соли цинка
- •Задания для самостоятельной работы
- •Ответы:
- •Часть II. Химия неметаллов
- •Глава 18. Химия водорода
- •Простое вещество
- •I. Промышленные способы.
- •II. Лабораторные способы:
- •Соединения водорода
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 19. Химия галогенов
- •19.1. Общая характеристика галогенов
- •Водородные соединения галогенов
- •19.2. Хлор
- •Хлороводород и соляная кислота
- •Кислородные кислоты хлора
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 20. Химия элементов подгруппы кислорода
- •20.1. Общая характеристика элементов подгруппы
- •Кислорода
- •20.2. Кислород
- •Простое вещество о2
- •I. Промышленные методы.
- •Простое вещество о3 (озон)
- •Соединения кислорода (с.О. 1) Пероксиды
- •Задания для самостоятельной работы
- •Ответы:
- •20.3. Вода
- •II. Окислительно-восстановительные свойства.
- •Задания для самостоятельной работы
- •Ответы:
- •20.4. Сера
- •Простое вещество
- •Соединения серы Сероводород н2s
- •I. Кислотно-основные свойства.
- •II. Окислительно-восстановительные свойства.
- •Oксид серы(IV), cернистый газ
- •Сернистая кислота h2so3
- •I. Кислотные свойства.
- •II. Окислительно-восстановительные свойства.
- •Оксид серы(VI), cерный газ
- •Серная кислота
- •II. Окислительно-восстановительные свойства.
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 21. Химия элементов подгруппы азота
- •21.1. Общая характеристика элементов подгруппы азота
- •21.2. Азот
- •Простое вещество
- •I. Промышленные способы.
- •II. Лабораторные способы.
- •Соединения азота Аммиак
- •II. Лабораторные способы.
- •I. Кислотно-основные свойства.
- •II. Окислительно-восстановительные свойства.
- •Соли аммония
- •Оксиды азота
- •Азотистая кислота и ее соли
- •Азотная кислота
- •I. Кислотно-основные свойства.
- •II. Окислительно-восстановительные свойства.
- •Соли азотной кислоты
- •Задания для самостоятельной работы
- •Ответы:
- •21.3. Фосфор
- •Простое вещество
- •Фосфорные кислоты
- •I. В промышленности.
- •II. В лаборатории.
- •Соли ортофосфорной кислоты
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 22. Химия элементов подгруппы углерода
- •22.1 Общая характеристика элементов подгруппы углерода
- •22.2. Углерод
- •Простое вещество
- •Неорганические соединения углерода с отрицательными степенями окисления (карбиды металлов)
- •Оксид углерода(II)
- •Оксид углерода(IV)
- •Угольная кислота
- •Соли угольной кислоты
- •Задания для самостоятельной работы
- •Ответы:
- •22.3. Кремний
- •Простое вещество
- •I. Промышленный способ:
- •II. Лабораторные способы:
- •Соединения кремния (с.О.4) Водородные соединения (силаны)
- •Оксид кремния(IV)
- •Кремниевые кислоты
- •Cоли кремниевых кислот (силикаты)
- •Задания для самостоятельной работы
- •Ответы:
- •Раздел III. Органическая химия
- •Глава 23. Строение и номенклатура органических соединений
- •23.1 Теория строения органических соединений
- •23.2. Номенклатура органических соединений
- •Задания для самостоятельной подготовки
- •Глава 24. Химия углеводородов
- •24.1. Алканы
- •II. Лабораторные методы.
- •24.2. Циклоалканы
- •24.3. Алкены
- •24.4. Диеновые углеводороды
- •24.5. Алкины
- •24.6. Арены
- •I. Реакции электрофильного замещения.
- •III. Реакции окисления.
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 25. Кислородсодержащие органические соединения
- •25.1. Спирты и фенолы
- •Обучающая задача
- •Задания для самостоятельной работы
- •Ответы:
- •25.2. Альдегиды. Кетоны
- •I. Реакции присоединения.
- •II. Реакции полимеризации.
- •III. Реакция поликонденсации.
- •Задания для самостоятельной работы
- •Ответы:
- •25.3. Карбоновые кислоты
- •I. Кислотные свойства.
- •II. Реакции с разрывом связи со (замещение он-группы).
- •III. Реакции с разрывом сн связи у -углеродного атома.
- •Обучающая задача
- •Задания для самостоятельной работы
- •Ответы:
- •25.4. Сложные эфиры. Жиры
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 26. Химия углеводов
- •26.1. Моносахариды
- •Глюкоза
- •Другие моносахариды
- •26.2. Дисахариды Мальтоза
- •Сахароза
- •26.3. Полисахариды Крахмал
- •Целлюлоза (клетчатка)
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 27. Азотсодержащие органические соединения
- •27.1. Амины
- •27.2. Аминокислоты
- •Задания для самостоятельной работы
- •Ответы:
- •Глава 28. Гетероциклические соединения. Нуклеиновые кислоты
- •28.1. Гетероциклические соединения
- •Пиридин
- •28.3. Нуклеиновые кислоты
- •Задания для самостоятельной работы
- •Ответы:
- •1. Таблица растворимости
Задания для самостоятельной работы
Определите тип реакции на каждой стадии следующих превращений:
Глава 6. Окислительно-восстановительные реакции
6.1. Основные понятия и определения
Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих молекул, называются окислительно-восстановительными.
Окислитель - это вещество, содержащее элемент, который принимает электроны, при этом степень окисления этого элемента понижается. В результате реакции окислитель восстанавливается.
Восстановитель - вещество, содержащее элемент, который отдает электроны, при этом степень окисления этого элемента повышается. В результате реакции восстановитель окисляется.
Так, в реакции:
2FeCl3 + 2KI I2 + 2FeCl2 + 2KCl
окислителем является Fe3+ (Fe3+ + 1e = Fe2+), а восстановителем - ион I:
Такое уравнение называется полуреакцией. Окисленная (ox) и восстановленная (red) формы, участвующие в полуреакции, составляют так зываемую редокс-пару.
Соединения, содержащие атом какого-либо элемента в низшей возможной степени окисления, могут быть за счет этого элемента только восстановителями. Напротив, соединения элемента, находящегося в высшей возможной степени окисления, могут быть за счет этого элемента только окислителями.
Окислительно-восстановительные реакции бывают:
1) межмолекулярные, в которых степени окисления изменяют атомы разных молекул:
а) окислитель и восстановитель - атомы разных элементов:
6C4O2
+ 6H2O2
+
6
(фотосинтез
в зеленых растениях)
б) окислитель и восстановитель - атомы одного элемента (реакции конмутации или контрдиспропорционирования, в которых атомы одного элемента в двух разных степенях окисления принимают одинаковую степень окисления в продуктах реакции):
S4O2 + 2H2S2 3S0 + 2H2O
2) внутримолекулярные, в которых изменяют степени окисления атомы, входящие в состав одной молекулы:
а) окислитель и восстановитель - атомы разных элементов:
2
2KCl1
+
б) окислитель и восстановитель - атомы одного элемента:
- реакции дисмутации или диспропорционирования, в которых атомы одного и того же элемента, имеющие одинаковую степень окисления, одновременно ее и повышают, и понижают:
- реакции конмутации:
N3H4N+3O2
+ 2H2O
6.2. Методы составления уравнений окислительно-восстановительных реакций
Для составления уравнений окислительно-восстановительных реакций применяют два метода: электронного баланса и полуреакций. Основным требованием обоих является то, что число электронов, отданных восстановителем, должно равняться числу электронов, принятых окислителем.
В методе электронного баланса сначала определяют степень окисления каждого атома и затем составляют схемы, отражающие процесс передачи электронов. После этого подбирают множители по правилу нахождения общего кратного, которые и будут представлять собой коэффициенты при окислителе и восстановителе.
Рассмотрим окислительно-восстановительную реакцию:
KMnO4 + HCl Cl2 + MnCl2 + KCl + H2O
2KMnO4 + 10HCl 2MnCl2 + 5Cl2 + KCl + H2O
Теперь уравниваем количество атомов, не участвующих в окислительно-восстановительной реакции:
а) ионов металлов, не изменивших степени окисления (калий):
2KMnO4 + 10HCl 2MnCl2 + 5Cl2 + 2KCl + H2O
б) ионов кислотных остатков (в данной реакции хлорид-ионов):
в) ионов водорода:
2KMnO4 + 16HCl 5Cl2 + 2KCl + 2MnCl2 + 8H2O
В заключение можно проверить правильность расстановки коэффициентов подсчетом общего количества атомов кислорода слева и справа.
В методе полуреакций коэффициенты окислительно-восстановитель-ных реакций определяют с учетом конкретной формы ионов, участвующих в процессе. Преимуществом метода является отсутствие необходимости пользоваться понятием степени окисления. Кроме того, он позволяет учесть влияние среды реакции на характер процесса.
Полезно запомнить вспомогательные уравнения для уравнивания кислорода “О2”, входящего в состав сложных ионов или молекул. В кислой среде следует пользоваться уравнением (а), в щелочной (и нейтральной) - уравнением (б):
а) “О2” + 2Н D H2O; б) “О2” + Н2О D 2ОН
Cреда влияет на изменение степеней окисления атомов, например, продукты восстановления перманганат-иона в разных средах можно представить следующей схемой:
Так, восстановление
в
кислой среде протекает до иона Mn2+:
K2SO3 + KMnO4 + H2SO4(разб.) K2SO4 + MnSO4 + H2O
В полуреакции восстановления окислителя слева записывают ион , а справа - Mn2+. Освобождающийся кислород в кислой среде связывается в четыре молекулы H2O, для образования которых в левую часть полуреакции необходимо добавить восемь катионов водорода. Уравняв количество атомов элементов в левой и правой частях полуреакции, подсчитывают суммарный заряд ионов слева и справа и вычисляют количество электронов, принятых окислителем, исходя из того, что сумма зарядов слева должна быть равна сумме зарядов справа.
Аналогично можно записать полуреакцию окисления восстановителя :
Далее, как и в методе электронного баланса, находят наименьшее кратное и дополнительные множители:
Затем суммируют обе полуреакции и после сокращения одинаковых слагаемых (H2O и H+) получают сокращенное ионное уравнение окислительно-восстановительной реакции, коэффициенты из которого переносят в молекулярное уравнение:
+ 16H+
+
+ 5H2O
2Mn2+
+ 8H2O
+
+
10H+
+ + 6H+ 2Mn2+ + + 3H2O
В молекулярной форме это взаимодействие описывается уравнением (с учетом одной дополнительной молекулы K2SO4 за счет двух ионов К+ из KMnO4):
2KMnO4 + 5K2SO3 + 3H2SO4 2MnSO4 + 6K2SO4 + 3H2O
В нейтральной среде перманганат-ион восстанавливается до оксида марганца(IV), причем освобождающийся кислород с молекулами воды образует гидроксид-ионы, которые в свою очередь являются источником кислорода при окислении сульфит-иона в сульфат-ион.
KMnO4 + K2SO3 + H2O MnO2 + KOH + K2SO4
При суммировании полуреакций можно записывать только те частицы, которые будут сокращаться:
4H2O + 6OH 8OH + 3H2O
Сократив три молекулы воды и шесть гидроксид-ионов, которые есть в обеих частях уравнения, получаем полное ионное уравнение:
+
+
H2O 2MnO2
+
+
2OH
коэффициенты из которого переносим в молекулярное уравнение:
2KMnO4 + 3K2SO3 + H2O 2MnO2 + 2KOH + 3K2SO4
В щелочной среде реакция идет с образованием манганат-ионов. При этом необходимо помнить, что источником кислорода в щелочной среде являются гидроксид-ионы: два гидроксид-иона могут отдать один кислород, превращаясь при этом в одну молекулу воды.
2KMnO4 + K2SO3 + 2KOH 2K2MnO4 + K2SO4 + H2O
+
+
2OH
+
+
H2O
Метод полуреакций применим лишь для описания и подбора коэффициентов окислительно-восстановительных процессов, протекающих в растворах. Метод же электронного баланса позволяет установить стехиометрические отношения в любых реакциях окисления-восстановления, независимо от среды.