- •Вопрос 1. Определение производной, ее геометрический смысл.
- •Вопрос 2. Непрерывность функции, имеющей производную.
- •Вопрос 3. Производная суммы, произведения, частного.
- •Вопрос 4. Производная обратной функции.
- •Вопрос 5. Определение дифференцируемости функции. Необходимое и достаточное условие дифференцируемости.
- •Теорема 1: Для того, чтобы функция была дифференцируемой в точке , необходимо и достаточно , чтобы она имела конечную производную в этой точке.
- •Вопрос 6. Дифференциал. Его геометрический смысл.
- •Вопрос 7. Производная сложной функции.
- •Вопрос 8. Производная высших порядков. Дифференциал высших порядков.
- •Вопрос 9. Дифференцирование параметрически заданной функции.
- •Вопрос 10. Теорема Ферма. Ее геометрический смысл.
- •Вопрос 11 Теорема Ролля. Ее геометрический смысл.
- •Вопрос 13. Теорема о среднем Лагранжа. Ее геометрический смысл.
- •Вопрос 14. Правило Лопиталя. Раскрытие неопределенностей. Правило Лопиталя. Случай 0/0.
- •Правило Лопиталя. Случай .
- •Раскрытие неопределенностей вида , , , , .
- •Вопрос 15. Разложение многочлена по степеням (х-а)
- •Вопрос 16. Формула Тейлора с остаточным членом в форме Лагранжа.
- •Вопрос 17. Остаточный член в форме Пеано.
- •Вопрос 18. Ряд Тейлора, его сходимость, признак сходимости.
- •Вопрос 19.
- •Экстремум функции. Необходимое условие экстремума непрерывной функции.
- •Вопрос 20. Экстремум функции. Достаточное условие экстремума непрерывной функции.
- •Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.
- •Вопрос 21. Достаточное условие экстремума функции, имеющей n-ную производную.
- •Вопрос 22.
- •Выпуклость и вогнутость прямой. Точки перегиба.
- •Теорема 1 (Достаточное условие существования точки перегиба).
- •Вопрос 23. Асимптоты функции.
- •Вопрос 24. Первообразная. Теорема о первообразной.
- •Вопрос 25. Неопределенный интеграл. Его свойства.
- •Вопрос 26. Метод внесения под знак дифференциала. Метод подстановки.
- •Вопрос 27. Интегрирование по частям.
- •Вопрос 28. Интегрирование рациональных дробей.
- •Вопрос 30.
- •Интегрирование тригонометрических функций.
- •Вопрос 31. Интегральная сумма, ее предел. Определение определенного интеграла.
- •Вопрос 32. Необходимое условие интегрируемости.
- •Вопрос 33. Суммы Дарбу. Их свойства.
- •Вопрос 34. Необходимое и достаточное условия интегрируемости функции.
- •Вопрос 35. Достаточное условие интегрируемости функции.
- •Вопрос 36. Свойства определенного интеграла.
- •Вопрос 37. Интеграл с переменным верхним пределом, его непрерывность.
- •Вопрос 38. Дифференцируемость интеграла с переменным верхним пределом.
- •Вопрос 39. Формула Ньютона-Лейбница.
- •Вопрос 40. Замена переменной в определенном интеграле.
- •Вопрос 41. Интегрирование по частям определенного интеграла.
- •Вопрос 42. Теорема о среднем для определенного интеграла.
- •Вопрос 43. Непрерывная и гладкая прямая, заданная параметрически. Длина этой кривой.
- •Вопрос 44. Площадь фигуры, заданной в полярной системе координат.
- •Вопрос 45. Объем тел вращения.
Вопрос 27. Интегрирование по частям.
Пусть даны U и V, тогда по правилу интегрирования по частям
Пример 1:
Пример 2:
Вопрос 28. Интегрирование рациональных дробей.
Пусть
нужно найти неопределенный интеграл
от рациональной действительной дроби.
Если степень многочлена P k не меньше
степени многочлена Q n (
),
то прежде всего разделим P на Q :
Многочлен
R интегрируется без труда, а
– правильная действительная дробь. Все
трудности сводятся к интегрированию
правильной дроби, которую мы снова
обозначим через
и
представим в виде:
Тогда
пусть
,
1 случай.
Знаменатель содержит простые действительные корни, тогда его можно разложить на простейшие множители: (см.Теор.1)
.
Тогда
Приравнивая тождественно равные числители, получим:
Существуют
2 метода нахождения
:
сравниваем коэффициенты при x с одинаковыми степенями; однако этот метод очень трудоемкий.
Т.к. равенства тождественны, можем взять
,
тогда
.
Так, подставляя поочередно
найдем все
Т.о., мы получили сумму элементарных дробей, которые можем легко проинтегрировать.
Пример
2 случай.
Знаменатель содержит кратные корни, тогда его можно представить в виде:
.
Пусть
существуют n различных корней с кратностями
,
тогда
-
и делаем все так же, как и в предыдущем
примере.
Пример
3 случай.
Знаменатель содержит кратные корни и многочлены, имеющие комплексные корни;
,
где многочлены
,
имеют комплексные корни.
Тогда R(x) представим в виде:
Снова приводим к общему знаменателю и приравниваем числители.
Пример
4 случай
Знаменатель содержит кратные действительные и кратные комплексные корни;
Тогда R(x) представим в виде:
А дальше все делаем по старой схеме: методом неопределенных коэффициентов находим A, B...
Пример
Вопрос 29.
Интегрирование иррациональных функций.
Для
интегрирования иррациональной функции,
содержащей
используется
подстановка
.
Чтобы
проинтегрировать иррациональную
функцию, содержащую несколько рациональных
степеней x, применяется подстановка
в форме
,
где n полагается равным наименьшему
общему кратному знаменателей всех
дробных степеней, входящих в данную
функцию.
Рациональная
функция x под знаком корня n-ой
степени, т.е. выражение вида
,
интегрируется с помощью подстановки
.
Вопрос 30.
Интегрирование тригонометрических функций.
Пусть
,
где
и
- многочлены от
и
.
1)
Если один из многочленов
,
четный по
,
а другой – нечетный по
,
то подстановка
рационализирует интеграл.
2)
Если один из многочленов
,
четный по
,
а другой – нечетный по
,
то подстановка
рационализирует интеграл.
3)
Если оба многочлена четные по
и
,
то подстановка
рационализирует интеграл.
3’)
Выражения вида
,
где
и
- четные. Они сходны с 3 случаем, где
4) Универсальная подстановка.
Рационализация
также достигается с помощью подстановки
,
которая называется универсальной.
В самом деле,
;
;
.
5)
Выражения вида
;
;
.
Они рационализируются с помощью перевода
в тригонометрические суммы.
