Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
раздел 7-8.docx
Скачиваний:
2
Добавлен:
25.04.2019
Размер:
228.1 Кб
Скачать

РАЗДЕЛ

7

ЭЛЕКТРОФИЗИЧЕСКИЕ

И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ

ОБРАБОТКИ

1. ХАРАКТЕРИСТИКА ЭЛЕКТРОФИЗИЧЕСКИХ И ЭЛЕКТРОХИМИЧЕСКИХ МЕТОДОВ ОБРАБОТКИ

Развитие всех отраслей промышленно­сти, особенно авиационной и ракетно-космической техники, привело к исполь­зованию материалов со специальными эксплуатационными свойствами: сверх­твердых, весьма вязких, жаропрочных, композиционных. Обработка заготовок из этих материалов обычными методами (способами) механической обработки весьма затруднительна или невозможна вообще. Поэтому параллельно с разработ­кой этих материалов создавались принци­пиально новые методы (способы) обра­ботки. Характерно, что при механической обработке в технологическом оборудова­нии электрическая энергия превращается в механическую и за счет силового воздей­ствия инструмента (штампа, резца, фрезы, шлифовального круга и т.д.) на заготовку происходит ее формоизменение (формо­образование).

Электрофизические и электрохимиче­ские (ЭФЭХ) методы обработки основаны на непосредственном воздействии различ­ных видов энергии (электрической, хими­ческой и др.) на обрабатываемую заготов­ку. При обработке заготовок этими мето­дами отсутствует силовое воздействие инструмента на заготовку или оно на-

столько мало, что практически не влияет на суммарную погрешность обработки. Эти методы позволяют изменять форму обрабатываемой поверхности заготовки и влиять на состояние поверхностного слоя. Так, в некоторых случаях наклеп обрабо­танной поверхности не образуется, де­фектный слой незначителен, удаляются прижоги поверхности, полученные при шлифовании, повышаются коррозионные, прочностные и другие эксплуатационные характеристики поверхностей деталей.

Кинематика формообразования по­верхностей деталей ЭФЭХ методами об­работки, как правило, проста, что обеспе­чивает точное регулирование процессов и их автоматизацию. ЭФЭХ методы обра­ботки являются универсальными и обес­печивают непрерывность процессов при одновременном формообразовании всей обрабатываемой поверхности. При этом появляется возможность обрабатывать очень сложные наружные и внутренние поверхности заготовок.

Технологическое оборудование для ЭФЭХ методов обработки, так же как и металлорежущие станки, оснащается сис­темами ЧПУ. Внедрение их в различных отраслях промышленности обеспечивает получение значительного экономического эффекта. Классификация ЭФЭХ методов обработки по их физической сущности показана на рис. 6.1.

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

443

2. ЭЛЕКТРОЭРОЗИОННАЯ ОБРАБОТКА

При электроэрозионной обработке (ЭЭО) используют явление эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсов электрического тока. Заготовку и инстру­мент, изготовленные из токопроводящих материалов, подключают к источнику тока -генератору импульсов (ГИ) и помещают в диэлектрическую жидкость (рис. 7.1).

При сближении электрода-инструмен­та (Э-И) и электрода-заготовки (Э-3) на расстояние в несколько микрометров (10 ... 50 мкм) между микровыступами на Э-И и Э-3 возникает электрический раз­ряд и образуется канал проводимости (рис. 7.1, а), в котором от катода к аноду движется поток электронов.

Навстречу этому потоку движутся бо­лее тяжелые частицы - ионы (рис. 7.1, б). Электроны быстрее достигают поверхно­сти анода. Поэтому энергия электрическо­го разряда смещается ближе к поверхности заготовки (Э-3). Температура электрическо­го разряда достигает 10 000 ... 12 000 °С. При такой температуре происходят мгно­венное оплавление и частичное испарение элементарного объема материала заготов­ки. При этом время протекания разряда чрезвычайно мало. Поэтому процесс вы­деления энергии сопровождается явле­нием микровзрыва. За счет этого опла-

вившиеся частицы металла выбрасыва­ются в окружающую среду (рис. 7.1, в), охлаждаются диэлектрической жидко­стью и застывают в виде малых шариков (0,01 ... 0,005 мм), образуя шлам - про­дукт эрозии. В результате на поверхности анода образуется сферическое углубление -лунка. Поверхность катода также подвер­гается частичному эрозионному разруше­нию (рис. 7.1, в).

Следующий разряд произойдет в том месте, где расстояние между инструмен­том и заготовкой окажется минимальным. Так образуется вторая лунка на поверхно­сти заготовки. При воздействии серии электрических импульсов с анода удаля­ется слой материала. Непрерывность про­цесса обеспечивается за счет подачи Э-И. Постоянство межэлектродного зазора обеспечивается автоматически с помощью следящих систем.

Обработанная поверхность представля­ет собой совокупность лунок (рис. 7.1, г), глубина которых определяет шерохова­тость поверхности.

Помимо шероховатости обработанная поверхность характеризуется следующими показателями:

- вследствие мгновенного нагрева по­верхности заготовки до температуры плавления металла и резкого охлаждения в среде диэлектрической жидкости возни­кают температурные напряжения, приво­дящие к возникновению микротрещин;

Рис. 7.1 .Схема процесса ЭЭО

В) в)

444

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

  • за счет нагрева до высоких темпера­тур и возможного поглощения углерода из окружающей среды в поверхностном слое происходят структурные изменения и, с учетом быстрого охлаждения, твердость поверхностного слоя значительно повы­шается по сравнению с твердостью основ­ного материала стальной заготовки;

  • под действием высокой температуры в зоне оплавления основной материал вступает в химическую реакцию с отдель­ными элементами материалов электрода-инструмента и диэлектрической жидкости, что ведет к изменению химического со­става поверхностного слоя.

При малой длительности импульсов (5 ... 200 мкс) поверхности катода успева­ет достичь лишь малая доля ионов. По­этому поверхность катода значительно меньше подвергается эрозионному разру­шению по сравнению с поверхностью анода. Именно поэтому анодом делают заготовку (Э-3), а катодом - инструмент (Э-И). Такую полярность называют прямой (см. рис. 7.1, а). При большей длительно­сти импульсов (2 ■ 102 ... 105 мкс) многие ионы успевают достичь поверхности ка­тода, и, обладая большей энергией по сравнению с потоком электронов, вызы­вают интенсивную эрозию катода. В этом случае обработку осуществляют при об­ратной полярности: Э-И является анодом, а Э-3 - катодом.

В зависимости от параметров импуль­сов и используемого оборудования ЭЭО подразделяют на электроискровую, элек­троимпульсную, высокочастотную и элек­троконтактную.

При электроискровой обработке ис­пользуют прямую полярность, т.е. Э-И подсоединяют к катоду, а Э-3 - к аноду. Генератор импульсов настраивают на со­ответствующие режимы обработки. Про­должительность импульса составляет 20 ... 200 мкс. Величина энергии импульса регу­лируется подбором емкости конденсаторов.

При увеличении емкости конденсатора накапливаемый запас энергии возрастает и, следовательно, повышается производи-

тельность процесса. В зависимости от ко­личества энергии, расходуемой в импуль­се, режим обработки делят на жесткий или средний (для предварительной обработки) и мягкий или особо мягкий (отделочной обработки). Мягкий режим обработки по­зволяет получать размеры с точностью до 0,002 мм при шероховатости поверхности Ra 0,63 ... 0,16 мкм.

Обработку ведут в ваннах, заполнен­ных диэлектрической жидкостью. Жид­кость исключает нагрев электродов (инст­румента и заготовки), охлаждает продукты разрушения, уменьшает боковые разряды между инструментом и заготовкой, что повышает точность обработки.

Для обеспечения непрерывности про­цесса обработки необходимо, чтобы зазор между инструментом-электродом и заго­товкой был постоянным. Для этого элек­троискровые станки снабжают следящей системой и механизмом автоматической подачи инструментов. Инструменты-элект­роды изготовляют из меди, латуни, медно-графитовых и других материалов.

В эрозионных станках используют раз­личные ГИ электрических разрядов: RC (резистор - емкость); RLC (L - индуктив­ность); LC; ламповые генераторы. В про­мышленности применяют широкодиапа­зонные транзисторные ГИ. Эти генерато­ры потребляют мощность 4 ... 18 кВт при силе тока 16 ... 125 А. Эффективность обработки составляет 75 ... 1900 мм3/мин при шероховатости обработанной поверх­ности 4 ... 0,2 мкм.

Электроискровым методом обрабаты­вают практически все токопроводящие материалы, но эффект эрозии при одних и тех же параметрах электрических импуль­сов различен. Зависимость интенсивности эрозии от свойств металлов называют элек­троэрозионной обрабатываемостью. Если принять электроэрозионную обрабатывае­мость стали за единицу, то для других ме­таллов ее можно представить в следующих относительных единицах: твердые сплавы -0,5; титан - 0,6; никель - 0,8; медь - 1,1; латунь - 1,6; алюминий - 4; магний - 6.

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

445

о +

=+—о+

о-

=4—о +

в)

Рис. 7.2. Схемы электроискровой обработки:

а - прошивание отверстия; б - обработка фасонной полости штампа; в - прошивание отверстия по способу трепанации; г - прошивание отверстия с криволинейной осью; д - вырезание заготовки из листа; е - шлифование внутренней поверхности фильеры

Электроискровым методом целесооб­разно обрабатывать твердые сплавы, труднообрабатываемые металлы и сплавы, тантал, молибден и другие материалы.

Электроискровым методом (рис. 7.2) получают сквозные отверстия любой фор­мы поперечного сечения (а), глухие от­верстия и полости (б), фасонные отверстия и полости по способу трепанации (в), от­верстия с криволинейными осями (г); вы­резают заготовки из листа (д), выполняют плоское, круглое и внутреннее (е) шлифо­вание, разрезают заготовки, клеймят детали.

Электроискровую обработку применя­ют для изготовления деталей штампов и пресс-форм, фильер, режущего инструмен­та, деталей топливной аппаратуры двигате­лей внутреннего сгорания, сеток и сит.

Электроискровую обработку применя­ют также для упрочнения поверхностного слоя металлов деталей машин, пресс-форм, режущего инструмента. Упрочне­ние состоит в том, что на поверхность из­делий наносят тонкий слой какого-либо металла, сплава или композиционного

материала. Подобные покрытия повыша­ют твердость, износостойкость, жаростой­кость, эрозионную стойкость и другие характеристики изделий.

На ограниченных участках особо на­груженной поверхности детали можно проводить сложнейшие микрометаллурги­ческие процессы.

Из электроэрозионных станков с сис­темами ЧПУ наибольшее распространение в промышленности имеют координатно-прошивочные, копировально-вырезные и универсальные копировалъно-прошивочные.

Координатно-прошивочные станки ра­ботают по позиционной системе ЧПУ, что позволяет автоматически по заданной программе устанавливать (позициониро­вать) заготовку относительно инструмента в необходимое положение. Обработку ве­дут профилированным инструментом. Во время обработки заготовка перемещений не имеет.

Копировально-вырезные станки рабо­тают по контурной системе ЧПУ. Обра­ботку ведут непрофилированным инстру-

446

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

Рис. 7.3. Схема работы копировально-вырезного станка с ЧПУ:

1 - катушка с проволокой; 2 - электродвигатель привода натяжения проволоки; 3 - генератор импульсов; 4 -проволока-инструмент; 5 - электродвигатель привода подачи проволоки; 6 и 7 - электродвигатели привода винта продольной и поперечной подач; 8 - рабочий стол станка; 9 - электронная следящая система; 10 - блок управления работой станка

ментом - бесконечным электродом-проволокой (рис. 7.3). Применяют мед­ную, латунную, вольфрамовую, молибде­новую проволоку диаметром 0,02 ... 0,3 мм. Программное устройство станков обеспе­чивает не только регулирование движений формообразования, но и регулирование технологического режима - напряжения на искровом промежутке. Особенность процесса вырезки состоит в наличии пе­ременной эквидистанты, зависящей от ширины прорезаемого паза. Следователь­но, устройства ЧПУ станков должны обеспечивать коррекцию эквидистанты. В станках такого типа системы ЧПУ обес­печивают управление по четырем и более координатным осям.

В универсальных копировально-про-шивочных электроэрозионных станках используют две системы ЧПУ: систему адаптивного управления с предваритель­ным набором координат и режимов по программе и систему адаптивно-програм­много управления по трем координатным осям. В станках этого типа системы ЧПУ обеспечивают планетарное движение за­готовки в следящем режиме, автоматиче-

ское позиционирование заготовки и авто­матическую смену инструмента.

При электроимпульсной обработке используют электрические импульсы большой длительности (2 • 102 ... 105 мкс). Большие мощности импульсов, получае­мых от электронных генераторов, обеспе­чивают высокую производительность процесса обработки. Применение генера­торов и графитовых электродов, а также обработка на обратной полярности позво­лили уменьшить разрушение электродов.

Электроимпульсную обработку

(рис. 7.4) наиболее целесообразно приме­нять при предварительной обработке штампов, турбинных лопаток, твердо­сплавных деталей, фасонных отверстий в деталях из коррозионно-стойких сталей и жаропрочных сплавов. В станках для электроимпульсной обработки широко используют различные системы про­граммного управления. Высокоточная конструкция станков с чувствительными сервосистемами позволяет изготовлять детали сложной геометрической формы с высокой точностью.

Приборы автоматического переключе­ния на разные подачу и глубину резания, управляемые системой ЧПУ, обеспечива­ют оптимальное использование электро­эрозионных станков, так как в зависимо­сти от хода процесса обработки режим работы согласуется с технологическими требованиями к деталям. Применяемые адаптивные системы программного уп­равления позволяют своевременно оп­ределять отклонения в ходе обработки и устранять их. Изменения параметров процесса обработки вносятся в устройства,

Рис. 7.4. Схема электроимпульсной обработки: 1 - электродвигатель; 2 - импульсный генератор постоянного тока; 3 - инструмент-электрод; 4 - заготовка-электрод; 5 - ванна

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

447

формирующие сигнал коррекции, что по­зволяет с помощью простых электродов изготовлять детали сложных геометриче­ских форм, в частности полостей штампов.

Высокочастотную электроискровую обработку применяют для повышения точности и уменьшения шероховатости поверхностей, обработанных электроэро­зионным методом. Метод основан на ис­пользовании электрических импульсов малой мощности при частоте 100 ... 150 кГц.

При высокочастотной электроискровой обработке (рис. 7.5) конденсатор С разря­жается при замыкании первичной цепи импульсного трансформатора прерывате­лем, вакуумной лампой или тиратроном. Инструмент-электрод и заготовка включе­ны во вторичную цепь трансформатора, что исключает возникновение дугового разряда.

Производительность метода в 30 ... 50 раз выше, чем при электроискровом методе, при значительном увеличении точности и уменьшении шероховатости поверхности. Износ инструмента незначителен.

Высокочастотный электроискровой метод применяют при обработке заготовок из твердых сплавов, так как он исключает структурные изменения и образование микротрещин в поверхностном слое мате­риала обрабатываемой заготовки.

Электроконтактная обработка осно­вана на локальном нагреве заготовки в месте контакта с электродом-инструмен­том и удалении размягченного или даже расплавленного металла из зоны обработки механическим способом: относительным

Рис. 7.5. Схема высокочастотной электроис­кровой обработки:

/ - инструмент-электрод; 2 - заготовка-электрод; 3 - импульсный трансформатор; 4 - прерыватель тока; 5 - выпрямитель

Рис. 7.6. Схема электроконтактной обработки плоской поверхности:

1 - обрабатываемая заготовка; 2 - инструмент-электрод: 3 - трансформатор

движением заготовки и инструмента. Ис­точником теплоты в зоне обработки слу­жат импульсные дуговые разряды. Элек­троконтактную обработку оплавлением рекомендуют для обработки крупных де­талей из углеродистых и легированных сталей, чугуна, цветных сплавов, туго­плавких и специальных сплавов.

Метод применяют при зачистке отли­вок от заливов, отрезке литниковых сис­тем и прибылей, зачистке проката из спец­сплавов, черновом круглом наружном, внутреннем и плоском шлифовании кор­пусных деталей машин из труднообраба­тываемых сплавов (рис. 7.6), шлифовании с одновременной поверхностной закалкой деталей из углеродистых сталей. Метод обработки не обеспечивает высокой точ­ности и качества поверхности, но дает высокую производительность съема ме­талла вследствие использования больших электрических мощностей.

3. ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

Электрохимические методы обработки основаны на законах анодного растворе­ния металлов при электролизе. При про­хождении электрического тока через элек­тролит на поверхности заготовки, вклю­ченной в электрическую цепь и являю­щейся анодом, происходят химические реакции, и поверхностный слой металла

448

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

превращается в химическое соединение. Продукты электролиза переходят в раствор или удаляются механическим способом.

Производительность процессов зави­сит в основном от электрохимических свойств электролита, обрабатываемого то-копроводящего материала и плотности тока. Электрохимическое полирование (рис. 7.7) выполняют в ванне, заполненной электролитом. В зависимости от обраба­тываемого материала электролитом слу­жат растворы кислот или щелочей. Обра­батываемую заготовку подключают к ано­ду; электродом-катодом служит металли­ческая пластинка из свинца, меди, стали. Для большей интенсивности процесса электролит подогревают до температуры 40...80°С.

При подаче напряжения на электроды начинается процесс растворения металла заготовки-анода. Растворение происходит главным образом на выступах микроне­ровностей поверхности вследствие более высокой плотности тока на их вершинах. Кроме того, впадины между микровысту­пами заполняются продуктами растворе­ния: оксидами или солями, имеющими пониженную электропроводимость. В ре­зультате избирательного растворения, т.е. большой скорости растворения выступов, микронеровности сглаживаются, и обра­батываемая поверхность приобретает ме­таллический блеск. Электрополирование улучшает электрофизические характери­стики деталей, так как уменьшается глу­бина микротрещин, поверхностный слой обрабатываемых поверхностей не дефор­мируется, исключаются упрочнение и термические изменения структуры, повы­шается коррозионная стойкость.

Электрополирование позволяет одно­временно обрабатывать партию заготовок по всей их поверхности. Этим методом получают поверхности деталей под галь­ванические покрытия, доводят рабочие поверхности режущего инструмента, полируют тонкие ленты и фольгу, очища­ют и декоративно отделывают детали.

Вид А

Рис. 7.7. Схема электрохимического полирования: / - ванна; 2 - обрабатываемая заготовка; 3 - пластина-электрод; 4 - электролит, 5 - микровыступ; 6 - продукт анодного растворения

Электрохимическую размерную обра­ботку выполняют в струе электролита, прокачиваемого под давлением через меж­электродный промежуток, образуемый обрабатываемой заготовкой-анодом и ин­струментом-катодом .

Струя электролита, непрерывно пода­ваемого в межэлектродный промежуток, растворяет образующиеся на заготовке-аноде соли и удаляет их из зоны обработ­ки. При этом способе одновременно обра­батывается вся поверхность заготовки, находящаяся под активным воздействием катода, что обеспечивает высокую произ­водительность процесса. Участки заготов­ки, не требующие обработки, изолируют. Инструменту придают форму, обратную форме обрабатываемой поверхности. Формообразование поверхности происхо­дит по методу копирования.

Импульсное рабочее напряжение спо­собствует повышению точности обрабо­танной поверхности заготовки. Точность обработки значительно повышается при уменьшении рабочего зазора между заго­товкой и инструментом. Для контроля зазора используют высокочувствительные элементы, встраиваемые в следящую сис­тему. Способ рекомендуют для обработки заготовок из высокопрочных сплавов, карбидных и труднообрабатываемых ма­териалов. Отсутствие давления инстру­мента на заготовку позволяет обрабаты­вать нежесткие тонкостенные детали с высокими точностью и качеством обрабо­танной поверхности.

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

449

Рис. 7.8. Схема электрохимической размерной обработки: / - инструмент-электрод; 2 - заготовка; 3 - изолятор

Для электрохимической размерной об­работки используют нейтральные элек­тролиты. Наиболее широко применяют растворы солей NaCl, NaN03 и Na2S04.

На рис. 7.8 показаны схемы обработки заготовок в струе проточного электролита: турбинной лопатки (а), штампа (б) и схема прошивания сквозного цилиндрического отверстия (в).

Многие модели станков управляются системами ЧПУ. В процессе обработки система ЧПУ задает и контролирует вели­чины напряжения и тока, постоянство ра­бочего зазора, скорость подачи электрода-инструмента, скорость потока и концен­трацию электролита. Соблюдение этих параметров режима обеспечивает высокие точность и производительность обработки заготовок.

На модернизированных электрохими­ческих или электроэрозионных станках осуществляют комбинированную обра­ботку заготовок электроэрозионно-хими-ческим способом. Этот процесс обработ­ки, основанный на сочетании анодного растворения и эрозионного разрушения металла, более производителен, чем элек­трохимический, но уступает по точности и шероховатости обработанной поверхно­сти. Скорость обработки до 50 мм/мин; точность 0,2 ... 0,4мм; шероховатость Ra 10 ... 20 мкм.

При электроабразивной и электро­алмазной обработке инструментом-элект­родом служит шлифовальный круг из аб-

разивного материала на электропроводя­щей связке (бакелитовая связка с графито­вым наполнителем). Между анодом-заготовкой и катодом-шлифовальным кру­гом имеется межэлектродный зазор, обра­зованный зернами, выступающими из связки. В зазор подается электролит. Про­дукты анодного растворения материала заготовки удаляются абразивными зерна­ми; шлифовальный круг имеет вращатель­ное движение, а заготовка - движения по­дачи, т.е. движения, соответствующие процессу механического шлифования.

Введение в зону резания ультразвуко­вых колебаний повышает производитель­ность электроабразивного и электроал­мазного шлифования в 2 ... 2,5 раза при значительном улучшении качества обра­ботанной поверхности. Электроабразив­ные и электроалмазные методы применя­ют для отделочной обработки заготовок из труднообрабатываемых материалов, а так­же нежестких заготовок, так как силы ре­зания здесь незначительны. При этих ме­тодах обработки прижоги обрабатываемой поверхности практически исключены.

При электроабразивной обработке (рис. 7.9) 85 ... 90 % припуска удаляется за счет анодного растворения и 15 ... 10 % -за счет механического воздействия. При электроалмазной обработке ~ 75 % при­пуска удаляется за счет анодного раство­рения и ~ 25 % - за счет механического воздействия алмазных зерен.

15-9503

450

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

9-

Вид А увеличено

Рис. 7.9. Схема электроабразивного шлифования: 1 - заготовка; 2 - абразивные зерна; 3 - связка шлифовального круга

Рис. 7.10. Схема электрохимического

хонингования цилиндра:

1 - хонинговальная головка; 2 - заготовка цилиндра;

3 - изолятор; 4 - ванна; 5 - стол хонинговапьного

станка

Отделочную обработку поверхностей заготовок можно проводить электрохими­ческим хонингованием (рис. 7.10). Кине­матика процесса соответствует хо-нингованию абразивными головками. От­личие состоит в том, что заготовку уста­навливают в ванне, заполненной электро­литом, и подключают к аноду. Хонинго-вальную головку подключают к катоду. Вместо абразивных брусков в головке ус­тановлены деревянные или пластмассо­вые. Продукты анодного растворения уда­ляются с обрабатываемой поверхности брусками при вращательном и возвратно-поступательном движениях хонинговаль-ной головки. Чтобы продукты анодного

растворения удалялись более активно, в электролит добавляют абразивные мате­риалы. После того как удаление припуска с обрабатываемой поверхности закончено, осуществляют процесс "выхаживания" поверхности при выключенном электри­ческом токе для полного удаления анод­ной пленки с обработанной поверхности. Электрохимическое хонингование обеспе­чивает более низкую шероховатость по­верхности, чем хонингование абразивны­ми брусками. Поверхность получает зер­кальный блеск. Производительность элек­трохимического хонингования в 4 ... 5 раз выше производительности механического хонингования.

4. АНОДНО-МЕХАНИЧЕСКАЯ ОБРАБОТКА

Анодно-механическая обработка осно­вана на сочетании электротермических и электромеханических процессов и занима­ет промежуточное место между электро­эрозионными и электрохимическими ме­тодами. Обрабатываемую заготовку под­ключают к аноду, а инструмент - к катоду. В зависимости от характера обработки и вида обрабатываемой поверхности в каче­стве инструмента используют металличе­ские диски, цилиндры, ленты, проволоку. Обработку ведут в среде электролита, ко­торым чаще всего служит водный раствор жидкого натриевого стекла. Заготовке и инструменту задают такие же движения, как при обычных методах механической обработки резанием. Электролит подают в зону обработки через сопло (рис. 7.11).

Рис. 7.11. Схема анодно-механической обработки плоской поверхности

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

451

.^г£рде-

U

пр

6+

Рис. 7.12. Примеры анодно-механической обработки

При пропускании через раствор элек­тролита постоянного электрического тока происходит процесс анодного растворе­ния, как при электрохимической обработ­ке. При соприкосновении инструмента-катода с микронеровностями обрабаты­ваемой поверхности заготовки-анода про­исходит процесс электроэрозии, присущий электроискровой обработке. Кроме того, при пропускании электрического тока ме­талл заготовки в точке контакта с инстру­ментом разогревается так же, как при электроконтактной обработке, и материал заготовки размягчается. Продукты элек­троэрозии и анодного растворения удаля­ются из зоны обработки при относитель­ных движениях инструмента и заготовки.

Анодно-механическим методом обра­батывают заготовки из всех токопроводя-щих материалов, высокопрочных и труд­нообрабатываемых металлов и сплавов, вязких материалов.

В станках для анодно-механической обработки используют системы ЧПУ. По программе осуществляется управление скоростями движений заготовки и инст­румента, поддерживается постоянство зазора в рабочем пространстве между ни­ми, задаются параметры электрического режима при переходе с черновой обработ­ки на чистовую.

Анодно-механическим методом (рис. 7.12) разрезают заготовки на части (а), проре­зают пазы и щели, обтачивают поверхно­сти тел вращения (б), шлифуют плоские

поверхности и поверхности, имеющие форму тел вращения (в), полируют поверх­ности, затачивают режущий инструмент.

5. ХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

Сущность химической обработки заготовок состоит в направленном раз­рушении металлов и сплавов травлением их в растворах кислот и щелочей.

Перед травлением обрабатываемые по­верхности заготовок тщательно очищают. Поверхности, не подлежащие обработке, защищают химически стойкими покры­тиями (окрашивают лаками и красками, применяют химические и гальванические покрытия, светочувствительные эмульсии).

Подготовленные к обработке заготовки опускают в ванну с раствором кислоты или щелочи в зависимости от материала, из которого они изготовлены. Незащи­щенные поверхности заготовок подверга­ют травлению. Чтобы скорость травления была постоянной, а это позволяет опреде­лять время удаления припуска, концен­трацию раствора поддерживают неизмен­ной. В целях интенсификации процесса травления раствор подогревают до темпе­ратуры 40 ... 80 °С. После обработки заго­товки промывают, нейтрализуют, еще раз промывают горячим содовым раствором и удаляют защитные покрытия.

Химическим травлением получают ме­стные утонения на нежестких заготовках, ребра жесткости, извилистые канавки и щели, "вафельные" поверхности, обраба-

15*

452

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

тывают поверхности, труднодоступные для режущего инструмента.

Химико-механическим методом обра­батывают заготовки из твердых сплавов. Заготовки приклеивают специальными клеями к пластинам и опускают в ванну, заполненную суспензией, состоящей из раствора сернокислой меди и абразивного порошка. В результате обменной химиче­ской реакции на поверхностях заготовок выделяется рыхлая металлическая медь, а кобальтовая связка твердого сплава пере­ходит в раствор в виде соли, освобождая тем самым зерна карбидов титана, вольф­рама и тантала.

Медь вместе с карбидами сошлифовы-вается присутствующим в растворе абра­зивным порошком. В качестве инструмен­та используют чугунные диски или пла­стины. Карбиды удаляются в результате относительных движений инструмента и заготовок.

Химико-механическую обработку

применяют для разрезания и шлифования пластинок из твердого сплава, доводки твердосплавного инструмента.

6. УЛЬТРАЗВУКОВАЯ ОБРАБОТКА

Ультразвуковая обработка материалов -разновидность механической обработки -основана на разрушении обрабатываемого материала абразивными зернами под уда­рами инструмента, колеблющегося с ульт­развуковой частотой. Источником энергии служат ультразвуковые генераторы тока с частотой 16 ... 30 кГц. Инструмент полу­чает колебания от ультразвукового преоб­разователя с сердечником из магнито-стрикционного материала. Эффектом маг-нитострикции обладают никель, железо-никелевые сплавы (пермендюр), железо-алюминиевые сплавы (альфер), ферриты.

В сердечнике из магнитострикцион-ного материала при наличии электро­магнитного поля домены* разворачиваются

Домены - ферромагнитные области в фер­ромагнитных кристаллах, в которых атомные магнитные моменты ориентированы парал­лельно.

в направлении магнитных силовых линий, что вызывает изменение размера попереч­ного сечения сердечника и его длины. В переменном магнитном поле частота изменения длины сердечника равна часто­те колебаний тока. При совпадении часто­ты колебаний тока с собственной частотой колебаний сердечника наступает резонанс и амплитуда колебаний торца сердечника достигает 2 ... 10 мкм. Для увеличения амплитуды колебаний на сердечнике за­крепляют резонансный волновод перемен­ного поперечного сечения, что увеличивает амплитуду колебаний до 40 ... 60 мкм.

На волноводе закрепляют рабочий ин­струмент-пуансон. Под инструментом ус­танавливают заготовку и в зону обработки поливом или под давлением подают абра­зивную суспензию, состоящую из воды и абразивного материала. В качестве абра­зивных материалов используют карбид бора, карбид кремния, электрокорунд. Наибольшую производительность полу­чают при использовании карбидов бора. Инструмент поджимают к заготовке силой 1 ...60Н.

Заготовку 3 помещают в ванну / под инструментом 4 (рис. 7.13). Инструмент устанавливают на волноводе 5, который закреплен в магнитострикционном сер-

\Ь=г±=Г

;э—I

■ '3

10

\\+

4 Щ

12.

11

Рис. 7.13. Схема ультразвукового станка

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

453

дечнике 7, смонтированном в кожухе б, сквозь который прокачивают воду для охлаждения сердечника. Для возбуждения колебаний сердечника магнитострикцион-ного преобразователя служат генератор 8 ультразвуковой частоты и источник по­стоянного тока 9. Абразивную суспензию 2 подают под давлением по патрубку 10 насосом 11, забирающим суспензию из резервуара 12. Прокачивание суспензии насосом исключает оседание абразивного порошка на дно ванны и обеспечивает подачу в зону обработки абразивного материала.

Кавитационные явления в жидкости способствуют интенсивному перемеще­нию абразивных зерен под инструмен­том, замене изношенных зерен новыми, а также разрушению обрабатываемого материала.

Ультразвуковым методом обрабаты­вают хрупкие твердые материалы: стекло, керамику, ферриты, кремний, кварц, дра­гоценные минералы, в том числе алмазы, твердые сплавы, титановые сплавы, вольфрам.

Метод используют для профилирова­ния наружных поверхностей, гравирова­ния, изготовления деталей сложной фор­мы. Движениями подачи для указанных видов обработки являются вертикальная подача инструмента при обработке отвер-

стий и полостей, продольная подача заго­товки при разрезании ее на части, про­дольная и поперечная подачи заготовки при разрезании ее по сложному контуру. Для управления движениями заготовки и вертикальной подачей инструмента исполь­зуют системы программного управления.

Ультразвуковым методом обрабаты­вают (рис. 7.14) сквозные и глухие отвер­стия любой формы поперечного сечения (а, б), фасонные полости (в), разрезают заготовки на части (г), прошивают отвер­стия с криволинейными осями, нарезают резьбы.

Рабочие инструменты для обработки отверстий диаметром 0,5 ... 20 мм выпол­няют сплошными: диаметром 20 ... 100 мм -полыми (обработка по способу трепана­ции). Пазы долбят, а заготовки разрезают ножевидными пуансонами; внутренние полости обрабатывают пуансонами, форма торцов которых обратна форме обрабаты­ваемой поверхности. Инструменты изго­товляют из закаленных, но вязких мате­риалов.

Точность размеров и шероховатость поверхностей, обработанных ультразвуко­вым методом, зависят от зернистости ис­пользуемых абразивных материалов и со­ответствуют точности и шероховатости поверхностей, обработанных шлифованием.

а) б)

в) г)

Рис. 7.14. Схемы ультразвуковой обработки поверхностей заготовок

454

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

Использование ультразвуковых коле­баний оказалось эффективным и при обычных способах механической обработ­ки (точении, фрезеровании и др.). Нало­жение ультразвуковых колебаний малых амплитуд (2 ... 5 мкм) на режущий инст­румент (например, резец) в направлении главного движения резания существенно изменяет характер стружкообразования. Значительно снижается зона первичной и вторичной деформации срезаемого слоя металла, уменьшаются глубина и степень наклепа обработанной поверхности. Ульт­развуковые колебания почти полностью устраняют процессы наростообразования. Все это приводит к улучшению условий резания, снижению сил трения и повыше­нию качества поверхностного слоя.

Наиболее эффективным оказалось применение ультразвуковых колебаний малой амплитуды (2 ... 5 мкм) при обра­ботке жаропрочных, тугоплавких, титано­вых сплавов и других материалов, харак­теризующихся плохой обрабатываемо­стью резанием.

Эффективным оказалось также приме­нение ультразвуковых колебаний при ЭФЭХ методах обработки. Так, рацио­нальное совмещение электрохимической и ультразвуковой обработки твердых спла­вов позволяет в десятки раз повысить производительность труда и в несколько раз снизить износ инструмента и удель­ный расход электроэнергии.

7. ЛУЧЕВЫЕ МЕТОДЫ ОБРАБОТКИ

К лучевым методам формообразования поверхностей деталей машин относят электронно-лучевую и светолучевую (ла­зерную) обработку.

Электронно-лучевая обработка осно­вана на превращении кинетической энер­гии направленного пучка электронов в тепловую. Высокая плотность энергии сфокусированного электронного луча по­зволяет обрабатывать заготовки за счет нагрева, расплавления и испарения мате­риала с узколокального участка.

Схема установки для электронно­лучевой обработки (электронная пушка) приведена на рис. 5.15.

При размерной обработке заготовок установка работает в импульсном режиме, что обеспечивает локальный нагрев заго­товки. В зоне обработки температура дос­тигает 6000 °С, а на расстоянии 1 мкм от пятна фокусировки не превышает 300 °С. Продолжительность импульсов и интерва­лы между ними подбирают так, чтобы за один цикл успел нагреться и испариться только металл, находящийся под непо­средственным воздействием луча. Длитель­ность импульсов составляет 10^* ... Ю-6 с, а частота 50 ... 6000 Гц.

Метод целесообразен при создании ло­кальной концентрации высокой энергии, широком регулировании и управлении тепловыми процессами. Вакуумные среды позволяют обрабатывать заготовки из лег-коокисляющихся активных материалов. С помощью электронного луча можно на­носить покрытия на поверхности загото­вок в виде пленок толщиной от несколь­ких микрометров до десятых долей мил­лиметра.

Электронно-лучевой метод перспекти­вен при обработке отверстий диаметром 1 мм ... 10 мкм, прорезании пазов, резке заготовок, изготовлении тонких пленок и сеток из фольги. Обрабатывают заготовки из труднообрабатываемых металлов и сплавов, а также из неметаллических ма­териалов: рубина, керамики, кварца, полу­проводниковых материалов.

Светолучевая (лазерная) обработка основана на тепловом воздействии свето­вого луча высокой энергии на поверхность обрабатываемой заготовки. Источником светового излучения служит лазер - опти­ческий квантовый генератор (ОКГ).

Энергия светового импульса ОКГ обычно невелика и составляет 20 ... 100 Дж, но она выделяется в миллионные доли секунды и сосредоточивается в луче диа­метром -0,01 мм. В фокусе диаметр луча

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ

455

лазера составляет всего несколько микро­метров, что обеспечивает температуру в зоне воздействия с металлом 6000 ... 8000 °С. В результате этого поверхностный слой материала заготовки мгновенно расплав­ляется и испаряется.

Лазерную обработку применяют для прошивания сквозных и глухих отверстий, разрезки заготовок на части, вырезания заготовок из листовых материалов, проре-зания пазов. Этим методом можно обраба­тывать заготовки из любых материалов, включая самые твердые и прочные. На­пример, лазерную обработку отверстий применяют при изготовлении диафрагм для электронно-лучевых установок. Диа­фрагмы изготовляют из вольфрамовой, танталовой, молибденовой или медной фольги толщиной ~ 50 мкм при диаметре отверстия 20 ... 30 мкм. С помощью ла­зерного луча можно выполнить контур­ную обработку по аналогии с фрезерова­нием, т.е. обработку поверхностей по сложному периметру. Перемещениями заготовки относительно луча управляет система ЧПУ, что позволяет прорезать в заготовках сложные криволинейные пазы или вырезать из заготовок детали сложной геометрической формы.

8. ПЛАЗМЕННАЯ ОБРАБОТКА

Сущность обработки состоит в том, что плазму направляют на обрабатывае­мую поверхность (см. разд. V, гл. 2, п. 8).

Плазменным методом обрабатывают заготовки из любых материалов, выполняя прошивание отверстий, вырезку заготовок из листового материала, строгание, точе­ние. При прошивании отверстий, разрезке и вырезке заготовок головку устанавливают

перпендикулярно к поверхности заготов­ки, при строгании и точении - под углом 40... 60°.

Принципиально новым методом изго­товления деталей является плазменное напыление с целью получения заданных размеров. В камеру плазмотрона подаются порошкообразный конструкционный ма­териал и одновременно инертный газ под высоким давлением. Под действием дуго­вого разряда конструкционный материал плавится и переходит в состояние плазмы. Струя плазмы сжимается в плазмотроне плазмообразующим газом. Выходя из со­пла, струя плазмы направляется на обра­батываемую заготовку. Системы верти­кальной и горизонтальной разверток обес­печивают перемещение струи по поверх­ности обработки.

Плазменное напыление применяют и для получения деталей из напыляемого материала. Детали получаются в результа­те наращивания микрочастиц конструкци­онного материала в определенных местах экрана. Иногда вместо экрана используют тонкостенную заготовку, на которую на­правляется плазма, и происходит наращи­вание металла.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

  1. Какова физическая сущность электро­эрозионных методов обработки материалов?

  2. Каковы физико-механические свойства материала заготовки, обрабатываемой ультра­звуком?

  3. Назовите область применения элект­рохимической обработки.

4. Объясните физическую сущность эффек­ та магнитострикции.

5. Назовите области применения анодно- механической обработки.

РАЗДЕЛО ИЗГОТОВЛЕНИЕ ДЕТАЛЕЙ О ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Глава I Физико-технологические основы

получения композиционных материалов

1. ХАРАКТЕРИСТИКА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Развитие всех отраслей промышленно­сти, а также задача повышения качества выпускаемых изделий потребовали созда­ния новых конструкционных материалов. Авиация, ракетно-космическая техника, ядерная энергетика и многие другие от­расли нуждаются в материалах, характе­ризующихся высокими прочностью, тер­мостойкостью и жаропрочностью, малой плотностью, теплопроводностью и элек­тропроводимостью, диэлектрическими, магнитными и другими специальными физическими свойствами. Объединение различных ценных свойств отдельных материалов позволило создать единое це­лое - композицию. Современное материа­ловедение уже добилось значительных успехов в исследовании и разработке ком­позиционных материалов (КМ).

На современном этапе понятие компо­зиционного материала должно удовлетво­рять следующим критериям: композиция должна представлять собой объемное со­четание хотя бы двух химически разно­родных материалов с четкой границей раздела между этими компонентами (фа­зами) и характеризоваться свойствами, которых не имеет никакой из ее компо­нентов в отдельности. Композицию полу­чают путем введения в основной материал (матрицу) определенного количества дру­гого материала, который добавляется в

целях получения специальных свойств. КМ может состоять из двух, трех и более компонентов. Размеры частиц входящих компонентов могут колебаться в широких пределах - от сотых долей микрометра (для порошковых наполнителей) до не­скольких миллиметров (при использовании волокнистых наполнителей).

Практически всякий современный ма­териал представляет собой композицию, поскольку материалы редко используются в чистом виде. Действительно, почти все металлические сплавы содержат несколь­ко фаз, которые либо создаются специаль­но (для придания материалу заданных эксплуатационных и технологических свойств), либо образуются в результате наличия в металле вредных примесей.

Отличие большинства КМ от традици­онных материалов в том, что процесс по­лучения КМ технологически совмещается с процессом изготовления изделия.

Проектирование изделия из КМ начи­нается с конструирования самого мате­риала - выбора его компонентов и назна­чения оптимальных технологических про­цессов производства. Особенность созда­ния конструкций из КМ в отличие от кон­струкций из традиционных материалов заключается в том, что конструирование материала, разработка технологического процесса изготовления и проектирование самой конструкции - это единый взаимо­связанный процесс.

ПОЛУЧЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

457

mil.

гооог.

-Al-ша/ы П^-угмтикит-^ш»

ЩЩ-и-сл/ю/ы

стала

Рис. 8.1. Структура баланса используемых материалов планера самолета

Физико-механические свойства КМ в зависимости от концентрации компонен­тов, их геометрических параметров и ори­ентации, а также технологии изготовления могут меняться в очень широких преде­лах. Тем самым открывается возможность специального создания (конструирования) материала с заданными свойствами для определенного изделия.

С развитием теории и технологии КМ стало возможным создавать изделия, ра­ботающие в экстремальных условиях. Так, при разработке космического корабля многоразового использования "Буран" требовалось создать легкую конструкцию, способную длительно работать в исклю­чительно тяжелых условиях: при сверхвы­соких динамических и акустических на­грузках от мощных ракетных двигателей и сверхзвукового потока воздуха при подъ­еме; охлаждении в открытом космосе и нагреве облицовки корабля до температу­ры свыше тысячи градусов при входе в плотные слои атмосферы при посадке. Решения этих задач удалось достичь бла­годаря использованию конструкторами нетрадиционных новых, в том числе и композиционных, материалов со специ­альными свойствами.

Наглядным подтверждением широкого применения КМ является использование углепластиков в авиации (рис. 8.1). Ана-

логичная тенденция применения КМ ха­рактерна и для других отраслей промыш­ленности, так как это неразрывно связано с повышением технико-экономических показателей выпускаемых изделий.

2. КЛАССИФИКАЦИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Все КМ условно можно классифициро­вать по следующим признакам: материалу композиции, типу арматуры и ее ориента­ции, способу получения композиции и изделий из них, по назначению.

В зависимости от материала матрицы КМ можно разделить на следующие ос­новные группы: композиции с металличе­ской матрицей - металлические компо­зиционные материалы (МКМ), с поли­мерной - полимерные композиционные материалы (ПКМ), с резиновой - рези­новые композиционные материалы (РКМ) и с керамической - керамические композиционные материалы (ККМ).

Название ПКМ обычно присваивают в зависимости от армирующего материала. Например, ПКМ, армированные стеклян­ными волокнами, называют стеклопласти­ками. Аналогично получили свои названия металлопластики, асбестопластики, угле­пластики, боропластики и т.д.

458

ИЗГОТОВЛЕНИЕ ДЕТАЛЕЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

У металлических и керамических КМ пока еще нет четких правил присвоения названий. Обычно вначале указывают ма­териал матрицы, а затем армирующий ма­териал, например медно-вольфрамовые, алюминиево-стальные КМ и т.п.

По типу арматуры и ее ориентации КМ подразделяют на две основные группы: изотропные и анизотропные.

Изотропные КМ имеют одинако­вые свойства во всех направлениях. К этой группе относят КМ с порошкообразными наполнителями. К числу изотропных ус­ловно относят и КМ, армированные ко­роткими (дискретными) частицами. КМ при этом получаются квазиизотропными, т.е. изотропными в объеме всего изделия, но анизотропными в микрообъемах.

У анизотропных материалов свойства зависят от направления арми­рующего материала. Их подразделяют на однонаправленные, слоистые и трехмер­но-направленные. Анизотропия материала закладывается конструктором для получе­ния КМ с заданными свойствами. Одно­направленные КМ чаще всего проектиру­ют для изготовления изделий, работаю­щих на растяжение. Слоистые КМ полу­чают путем продольно-поперечной уклад­ки с правильным чередованием слоев. Трехмерно-направленное армирование обычно достигается за счет использования "сшитых" в поперечном направлении ар­мирующих тканей, сеток и т.п. Кроме та­кой анизотропии образуется еще техноло­гическая анизотропия, возникающая при пластическом деформировании изотроп­ных материалов (металлов).

В последнее время находят широкое применение так называемые гибридные КМ.

Гибридными называют КМ, со­держащие в своем составе три или более компонентов. В зависимости от распреде­ления компонентов гибридные КМ обыч­но делят на следующие классы: однород­ные КМ (рис. 8.2, а), с равномерным рас­пределением каждого армирующего ком­понента по всему объему композиции; ли­нейно неоднородные КМ с объединением отдельных волокон в жгуты (рис. 8.2, б);

Рис. 8.2. Схемы армирования КМ:

/ - одномерного; 2 - двумерного

КМ с плоскостной неоднородностью (рис. 8.2, в), в которых волокна каждого типа образуют чередующиеся слои, и мак-ронеоднородные КМ, когда разнородные волокна образуют зоны, соизмеримые с характерным размером изделия из КМ (рис. 8.2, г). При этом возможно использо­вать структуру типа "оболочка - сердце­вина". Такое сочетание компонентов рас­сматривается как наиболее перспективное. Конструктор, проектируя изделие из КМ, армирующие волокна (например, из угле­рода, бора и др.) помещает в оболочку из металлической проволоки, сетки, фольги и т.п. Такие "полуфабрикаты" характеризу­ются высокой технологичностью при изготовлении изделий из волокнистых КМ. Помимо рассмотренных возможны и дру­гие сочетания компонентов в композиции. По способу получения полимерные и резиновые КМ разделяют на литейные и прессованные. Металлические КМ анало­гично делят на литейные и деформируе-

ПОЛУЧЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

459

мые. Литейные получают путем пропитки арматуры расплавленным матричным ма­териалом (сплавом). Для получения де­формируемых МКМ применяют спека­ние, прессование, штамповку, ковку на молотах и др.

По назначению КМ разделяют на об­щеконструкционные, термостойкие, по­ристые, фрикционные и антифрикцион­ные и т.д.

3. ТРЕБОВАНИЯ,

ПРЕДЪЯВЛЯЕМЫЕ К АРМИРУЮЩИМ

И МАТРИЧНЫМ МАТЕРИАЛАМ

Армирующие материалы подразде­ляют на порошкообразные и волокнистые. Порошковые материалы должны удовле­творять требованиям по химическому составу, размерам и форме отдельных фракций, по технологическим свойствам (насыпная масса, текучесть, прессуемость, спекаемость) при изготовлении изделий порошковой металлургией. Они не долж­ны содержать загрязнений, влаги, масел и других примесей, должны храниться в условиях, исключающих окислительные процессы на поверхности порошковых зерен.

Армирующие волокна, используемые для получения КМ, должны иметь сле­дующие свойства: малую плотность, вы­сокую температуру плавления, минималь­ную растворимость в материале матрицы, высокую прочность во всем интервале рабочих температур, высокую химиче­скую стойкость, технологичность, отсут­ствие фазовых превращений в зоне рабо­чих температур, отсутствие токсичности при изготовлении и эксплуатации. Приме­няют в основном три вида волокон: ните­видные кристаллы, металлическую прово­локу, неорганические и поликристалличе­ские волокна.

Нитевидные кристаллы ("усы") рас­сматривают как наиболее перспективный материал для армирования металлов, по-

лимеров, керамики. Сверхвысокая проч­ность в широком диапазоне рабочих тем­ператур, малая плотность, химическая инертность ко многим материалам матри­цы и ряд других свойств делают их неза­менимыми в качестве армирующих мате­риалов. Однако широкое их внедрение сдерживается пока несовершенством тех­нологии их получения в промышленных масштабах, сложностью ориентации их в материале матрицы, сложностью техноло­гии деформирования изделий из компози­ций с нитевидными кристаллами и др.

Металлическая проволока из высо­копрочной стали, вольфрама, молибдена и других металлов имеет меньшую проч­ность, чем нитевидные кристаллы. Однако ее выпускают промышленно в больших количествах и в связи с более низкой стоимостью широко применяют в качестве арматуры, особенно для КМ на металли­ческой основе.

Неорганические и поликристалличе­ские волокна имеют малую плотность, высокую прочность и химическую стой­кость. Широко применяют углеродные, борные, стеклянные и другие волокна для армирования пластмасс и металлов.

Основное назначение наполнителей -придание КМ специальных свойств. На­пример, волокнистые наполнители вводят с целью получения максимальных проч­ностных характеристик.

Матрица в армированных композици­ях является основой, придает изделию форму и делает материал монолитным. Материал матрицы должен позволять композиции воспринимать внешние на­грузки. Матрица принимает участие в соз­дании несущей способности композиции, обеспечивая передачу силы на волокна. При нагружении за счет пластичности матрицы силы от разрушенных или дис­кретных (коротких) волокон передаются соседним волокнам. Передача нагрузки зависит прежде всего от качества соеди­нений, т.е. от хорошей адгезии между

460

ИЗГОТОВЛЕНИЕ ДЕТАЛЕЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

компонентами КМ. Без этого невозможны передача нагрузки волокон и, следова­тельно, армирование.

Получению качественного соединения способствуют взаимная диффузия с обра­зованием твердого раствора; поверхност­ное химическое взаимодействие между компонентами композиции; отсутствие на поверхности раздела каких-либо загряз­няющих слоев.

При изготовлении композиции в жид­кой фазе материал матрицы должен сма­чивать армирующий материал (волокно). Качество соединения зависит от смачи­ваемости волокон материалом матрицы, что обусловливается определенной степе­нью физического и химического сродства компонентов. Процесс смачивания сопро­вождается чаще всего частичным раство­рением волокон в материале матрицы или их химическим взаимодействием. Следо­вательно, смачивание почти всегда приво­дит к поверхностному разрушению волок­на. Но без химического взаимодействия невозможно смачивание.

Смачивание зависит также от взаимно­го физического сродства компонентов, т.е. от соотношения их поверхностных энер­гий (рис. 8.3).

Способность жидкой матрицы смачи­вать или не смачивать наполнитель зави­сит от соотношения сил поверхностного натяжения на границах твердая фаза -жидкость (ут _ ж), жидкость - пар (уж _ „) и твердая фаза - пар (ут_ п).

а) б)

Рис. 8.3. Схемы смачивания (а) и несмачивания (б) жидкой матрицей поверхности наполнителя: Т - твердая фаза; Ж - жидкость; П - пар

Если Ут - п > Yt - ж + Уж - п cos 0; смачива­ние удовлетворительное, и наоборот, если Ут - ж > Ут - п + Уж - п cos 9, смачивание не­удовлетворительное. Исследование сма­чивания обычно проводят путем нанесе­ния капли жидкого материала матрицы на подложку из материала наполнителя. О смачиваемости судят по величине краево­го угла 0 (рис. 8.3, а, б).

Смачивание может быть улучшено средствами, влияющими на первоначаль­ное равновесие между силами поверхно­стного натяжения. Наиболее эффективные способы улучшения смачиваемости - на­несение на армирующие волокна специ­альных покрытий и введение в материал матрицы специальных легирующих доба­вок. Улучшить смачивание при пропитке волокон металлическими расплавами можно, применив ультразвуковую обра­ботку жидкой фазы. В отдельных случаях положительный эффект может быть дос­тигнут за счет повышения температуры расплава и увеличения времени нахожде­ния композиции в жидком состоянии.

Таким образом, создавая новые КМ жидкофазными способами, следует при­нимать во внимание, что материал матри­цы должен полностью смачивать арми­рующие волокна, не должен разъедать или иным способом разрушать волокна. Кроме того, матрице отводится роль защитного покрытия, предохраняющего волокна от механических повреждений и окисления.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

  1. Что понимают под КМ и каковы предпо­сылки их создания?

  2. В чем заключается технологическая осо­бенность получения КМ?

3. По каким признакам классифицируют КМ?

  1. Какие основные требования предъявляют к армирующим и матричным материалам?

  2. Почему уделяют большое внимание во­просу смачивания и какими способами можно улучшить смачивание армирующих элементов матричным материалом?

ИЗГОТОВЛЕНИЕ ИЗДЕЛИЙ ИЗ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 461

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.