
- •Основные условные обозначения в математической статистике
- •Содержание
- •Введение
- •Основы теории вероятностей
- •1Предмет и метод математической статистики
- •2Понятие случайного события
- •3Вероятность случайного события
- •4Основные теоремы теории вероятностей
- •4.1Сложение вероятностей
- •4.2Умножение вероятностей
- •4.3Вычисление вероятностей
- •Случайные переменные
- •5Понятие случайной переменной
- •5.1Дискретные случайные переменные
- •5.2Непрерывные случайные переменные
- •6Математическое ожидание и дисперсия
- •7Моменты
- •Дискретные распределения
- •8Биномиальное распределение и измерение вероятностей
- •9Распределение редких событий (Пуассона)
- •Основные модели теоретических распределений
- •10Прямоугольное (равномерное) распределение
- •11Нормальное распределение
- •12Логарифмически нормальное распределение
- •Распределения параметров выборки
- •13.1Проблема Беренса–Фишера
- •15Χ2–распределение
- •Основы математической статистики
- •16Средние величины
- •16.1Общие свойства средних величин
- •17Средняя арифметическая
- •17.1Средний ранг (непараметрическая средняя)
- •17.2Взвешенная средняя арифметическая
- •17.3Средняя квадратическая
- •17.4Мода
- •17.5Медиана
- •18Средняя геометрическая
- •19Средняя гармоническая
- •Разнообразие значений признака
- •20Стандартное (среднеквадратическое) отклонение
- •20.1Число степеней свободы
- •20.2Коэффициент вариации
- •20.3Лимиты и размах
- •20.4Приближенные значения μ и
- •20.5Нормированное отклонение
- •21Проверка выпадов (артефактов)
- •22Средняя и сигма суммарной группы
- •23Скошенность (асимметрия) и крутизна (эксцесс) кривой распределения
- •Графическое представление распределений
- •24Вариационный ряд
- •25Гистограмма и вариационная кривая
- •26Кумулята
- •27Достоверность различия распределений
- •27.1Критерий χ2 (хи квадрат)
- •27.2Критерий λ (лямбда)
- •27.3Критерий по асимметрии и эксцессу
- •Нормальное распределение
- •28Генеральная совокупность и выборка
- •29Репрезентативность
- •30Ошибки репрезентативности и другие ошибки исследований
- •31Доверительные границы
- •Оценка генеральных параметров
- •32Общий порядок оценки
- •32.1Оценка средней арифметической
- •32.2Оценка средней разности
- •32.3Недостоверная и достоверная оценка средней разности
- •32.4Оценка разности генеральных средних
- •33Критерий достоверности разности
- •34Репрезентативность при изучении качественных признаков
- •35Достоверность разности долей
- •Парная корреляция
- •36Коэффициент корреляции
- •37Ошибка коэффициента корреляции
- •37.1Достоверность выборочного коэффициента корреляции
- •37.2Доверительные границы коэффициента корреляции
- •37.3Достоверность разности двух коэффициентов корреляции
- •38Уравнение прямолинейной регрессии
- •39Ошибки элементов уравнения прямолинейной регрессии
- •Частная и множественная линейные корреляции и регрессии
- •40Частный коэффициент корреляции
- •41Множественный коэффициент корреляции
- •42Линейное уравнение множественной регрессии
- •Криволинейная корреляция и регрессия
- •43Корреляционное отношение
- •44Свойства корреляционного отношения
- •45Ошибка репрезентативности корреляционного отношения
- •46Критерий линейности корреляции
- •Однофакторный дисперсионный анализ
- •47Сущность и метод дисперсионного анализа
- •47.1Результативный признак
- •47.2Фактор
- •47.3Градации факторов
- •47.4Градации комплекса
- •47.5Дисперсионный комплекс
- •47.6Статистические влияния
- •47.7Факториальное влияние
- •47.8Случайное влияние
- •47.9Общее влияние
- •48Однофакторный дисперсионный комплекс
- •Многофакторный дисперсионный анализ
- •49Многофакторный дисперсионный комплекс
- •50Преобразования
- •51Универсальное использование дисперсий
- •51.1Показатели силы влияний
- •51.2Ошибка репрезентативности основного показателя силы влияния
- •51.3Предельные значения показателей силы влияния
- •51.4Достоверность влияний
- •Классификация
- •52Дискриминантный анализ
- •52.1Постановка задачи, методы решения, ограничения
- •52.2Предположения и ограничения
- •52.3Алгоритм дискриминантного анализа
- •53Кластерный анализ
- •53.1Методы кластерного анализа
- •53.2Алгоритм кластерного анализа
- •Литература
- •Приложение. Основные формулы и определения
- •2 46019, Г. Гомель, ул. Советская, 104
47.7Факториальное влияние
Факториальное влияние – это простое или комбинированное статистическое влияние изучаемых факторов.
В однофакторных комплексах изучается простое влияние одного фактора при определенных организованных в опыте градациях и при определенных общих условиях.
Этого не следует забывать при интерпретации результатов анализа. Например, если действие температуры оказалось сильным при градациях 10°–15°–20°, это не значит, что столь же сильное статистическое влияние проявится и при любых других градациях фактора, например при 20°–25°–30°. Точно так же, если влияние температуры изучалось при нормальной влажности и естественном освещении, нельзя ожидать такой же степени влияния температуры при повышенной (пониженной) влажности и при искусственном освещении.
При анализе двухфакторных дисперсионных комплексов изучаются четыре факториальных влияния.
Влияние первого фактора при усредненном влиянии второго.
Влияние второго фактора при усредненном влиянии первого.
Влияние сочетания градаций обоих факторов.
Суммарное действие обоих организованных факторов.
При анализе влияний первого и второго факторов действуют те же ограничения, какие необходимо иметь в виду при анализе однофакторных комплексов: выявляется степень влияния только при данных градациях каждого фактора и при данных условиях.
Кроме того, следует помнить, что действие каждого фактора в двухфакторном комплексе изучается при усредненном влиянии другого фактора и усредненном действии всех остальных, неорганизованных в данном комплексе факторов. Например, если изучается степень проявления в данных условиях влияния отцов (первый фактор) и матерей (второй фактор), то сила отцовского влияния (при данном составе матерей и при определенных условиях) изучается при усредненной реализации влияния матерей, а сила материнского влияния – при усредненном влиянии отцов, участвовавших в проведенных скрещиваниях.
Третье влияние, или влияние сочетания градаций обоих факторов, возникает вследствие того, что второй фактор часто действует различно при разных градациях первого. То же можно наблюдать и в отношении первого фактора: его действие часто проявляется неодинаково при различных градациях второго фактора. Например, если изучается действие стимулятора линьки (две градации второго фактора – контроль, опыт) на самцов и самок (две градации первого фактора), то может случиться так, что введение стимулятора даст большой эффект только для самок, а для самцов – незначительный.
Такое разнообразие действий одного фактора при разных градациях другого создает дополнительное статистическое влияние (сверх изолированных влияний каждого фактора), которое учитывается как особый вид факториальных влияний.
Суммарное действие факторов (четвертое влияние) включает в себя изолированные влияния каждого из факторов и влияние сочетаний их градаций. Это суммарный представитель всех факториальных влияний в двухфакторном дисперсионном комплексе.
47.8Случайное влияние
Случайное влияние – это действие тех многих факторов, которые не организованы в изучаемом дисперсионном комплексе и составляют общий фон, на котором действуют организованные факторы. Так как неорганизованных факторов много и действуют они в разных направлениях, их влияние рассматривается как случайное, т. е. не вытекающее из закономерности действия организованных факторов.
Во всех дисперсионных комплексах случайные влияния выявляются и измеряются единообразно и для одной и той же очень важной цели: для определения той базы, с которой, как с эталоном, сравниваются факториальные влияния при определении их достоверности.
Чем больше факториальное влияние отличается от случайного, тем большая достоверность приписывается этому факториальному влиянию.
Это правило в дисперсионном анализе не имеет исключений. При определении достоверности факториальных влияний за базу сравнения можно принимать только случайные влияния.