
- •Основные условные обозначения в математической статистике
- •Содержание
- •Введение
- •Основы теории вероятностей
- •1Предмет и метод математической статистики
- •2Понятие случайного события
- •3Вероятность случайного события
- •4Основные теоремы теории вероятностей
- •4.1Сложение вероятностей
- •4.2Умножение вероятностей
- •4.3Вычисление вероятностей
- •Случайные переменные
- •5Понятие случайной переменной
- •5.1Дискретные случайные переменные
- •5.2Непрерывные случайные переменные
- •6Математическое ожидание и дисперсия
- •7Моменты
- •Дискретные распределения
- •8Биномиальное распределение и измерение вероятностей
- •9Распределение редких событий (Пуассона)
- •Основные модели теоретических распределений
- •10Прямоугольное (равномерное) распределение
- •11Нормальное распределение
- •12Логарифмически нормальное распределение
- •Распределения параметров выборки
- •13.1Проблема Беренса–Фишера
- •15Χ2–распределение
- •Основы математической статистики
- •16Средние величины
- •16.1Общие свойства средних величин
- •17Средняя арифметическая
- •17.1Средний ранг (непараметрическая средняя)
- •17.2Взвешенная средняя арифметическая
- •17.3Средняя квадратическая
- •17.4Мода
- •17.5Медиана
- •18Средняя геометрическая
- •19Средняя гармоническая
- •Разнообразие значений признака
- •20Стандартное (среднеквадратическое) отклонение
- •20.1Число степеней свободы
- •20.2Коэффициент вариации
- •20.3Лимиты и размах
- •20.4Приближенные значения μ и
- •20.5Нормированное отклонение
- •21Проверка выпадов (артефактов)
- •22Средняя и сигма суммарной группы
- •23Скошенность (асимметрия) и крутизна (эксцесс) кривой распределения
- •Графическое представление распределений
- •24Вариационный ряд
- •25Гистограмма и вариационная кривая
- •26Кумулята
- •27Достоверность различия распределений
- •27.1Критерий χ2 (хи квадрат)
- •27.2Критерий λ (лямбда)
- •27.3Критерий по асимметрии и эксцессу
- •Нормальное распределение
- •28Генеральная совокупность и выборка
- •29Репрезентативность
- •30Ошибки репрезентативности и другие ошибки исследований
- •31Доверительные границы
- •Оценка генеральных параметров
- •32Общий порядок оценки
- •32.1Оценка средней арифметической
- •32.2Оценка средней разности
- •32.3Недостоверная и достоверная оценка средней разности
- •32.4Оценка разности генеральных средних
- •33Критерий достоверности разности
- •34Репрезентативность при изучении качественных признаков
- •35Достоверность разности долей
- •Парная корреляция
- •36Коэффициент корреляции
- •37Ошибка коэффициента корреляции
- •37.1Достоверность выборочного коэффициента корреляции
- •37.2Доверительные границы коэффициента корреляции
- •37.3Достоверность разности двух коэффициентов корреляции
- •38Уравнение прямолинейной регрессии
- •39Ошибки элементов уравнения прямолинейной регрессии
- •Частная и множественная линейные корреляции и регрессии
- •40Частный коэффициент корреляции
- •41Множественный коэффициент корреляции
- •42Линейное уравнение множественной регрессии
- •Криволинейная корреляция и регрессия
- •43Корреляционное отношение
- •44Свойства корреляционного отношения
- •45Ошибка репрезентативности корреляционного отношения
- •46Критерий линейности корреляции
- •Однофакторный дисперсионный анализ
- •47Сущность и метод дисперсионного анализа
- •47.1Результативный признак
- •47.2Фактор
- •47.3Градации факторов
- •47.4Градации комплекса
- •47.5Дисперсионный комплекс
- •47.6Статистические влияния
- •47.7Факториальное влияние
- •47.8Случайное влияние
- •47.9Общее влияние
- •48Однофакторный дисперсионный комплекс
- •Многофакторный дисперсионный анализ
- •49Многофакторный дисперсионный комплекс
- •50Преобразования
- •51Универсальное использование дисперсий
- •51.1Показатели силы влияний
- •51.2Ошибка репрезентативности основного показателя силы влияния
- •51.3Предельные значения показателей силы влияния
- •51.4Достоверность влияний
- •Классификация
- •52Дискриминантный анализ
- •52.1Постановка задачи, методы решения, ограничения
- •52.2Предположения и ограничения
- •52.3Алгоритм дискриминантного анализа
- •53Кластерный анализ
- •53.1Методы кластерного анализа
- •53.2Алгоритм кластерного анализа
- •Литература
- •Приложение. Основные формулы и определения
- •2 46019, Г. Гомель, ул. Советская, 104
41Множественный коэффициент корреляции
Множественный коэффициент корреляции трех переменных – это показатель тесноты линейной связи между одним из признаков (буква индекса перед тире) и совокупностью двух других признаков (буквы индекса после тире):
; (12.6)
; (12.7)
(12.8)
Эти формулы позволяют легко вычислить множественные коэффициенты корреляции при известных значениях коэффициентов парной корреляции rxy, rxz и ryz.
Коэффициент R не отрицателен и всегда находится в пределах от 0 до 1. При приближении R к единице степень линейной связи трех признаков увеличивается. Между коэффициентом множественной корреляции, например Ry-xz, и двумя коэффициентами парной корреляции ryx и ryz существует следующее соотношение: каждый из парных коэффициентов не может превышать по абсолютной величине Ry-xz.
Квадрат коэффициента множественной корреляции R2 называется коэффициентом множественной детерминации. Он показывает долю вариации зависимой переменной под воздействием изучаемых факторов.
Значимость множественной корреляции оценивается по F–критерию:
, (12.9)
где:
n – объем выборки,
k – число признаков; в нашем случае k = 3.
Теоретическое значение F–критерия берут из таблицы приложений для ν1 = k–1 и ν2 = n–k степеней свободы и принятого уровня значимости. Нулевая гипотеза о равенстве множественного коэффициента корреляции в совокупности нулю (H0:R = 0) принимается, если Fфакт. < Fтабл. и отвергается, если Fфакт .≥ Fтабл.
42Линейное уравнение множественной регрессии
Математическое уравнение для прямолинейной зависимости между тремя переменными называется множественным линейным уравнением плоскости регрессии. Оно имеет следующий общий вид:
(12.10)
Здесь Y – зависимая переменная, X и Z – независимые переменные, а – общее начало отсчета, b1 и b2 – коэффициенты частной регрессии. Коэффициент b1 показывает, на какую величину увеличивается Y при каждом увеличении на одну единицу X при постоянном значении Z; коэффициент b2 указывает, на какую величину увеличивается Y при увеличении Z на единицу при постоянном значении X. Поэтому часто используют обозначения b1 = byx-z и b2 = byz-x, принятые для частных коэффициентов корреляции.
Параметры а, b1 и b2 вычисляют методом наименьших квадратов, который позволяет найти такое положение плоскости регрессии в пространстве, когда сумма квадратов отклонений эмпирических точек от нее является минимальной:
(12.11)
Установленное уравнением регрессии отношение зависимости коррелируемых признаков принято изображать графически в виде линий и поверхности регрессии. Поверхность регрессии дает четкое представление об эффекте комбинированного влияния изучаемых факторов на результативный признак.
Необходимо подчеркнуть, что математические уравнения для парной и множественной регрессии имеют смысл только в области фактических значений X, Y и Z только тогда, когда корреляционная связь значимо отличается от нуля.
Вопросы для самоконтроля
Что такое множественная корреляция?
Дайте определение частному коэффициенту корреляции.
С какими статистическими характеристиками формально связан частный коэффициент корреляции?
Дайте определение ошибке и критерию значимости частной корреляции. Отличен ли он от ошибки и критерия значимости парной корреляции?
Какие могут принимать значения частные коэффициенты корреляции?
Дайте определение множественному коэффициенту корреляции.
С какими статистическими характеристиками формально связан множественный коэффициент корреляции?
В каких пределах находятся значения множественного коэффициента корреляции?
Дайте определение коэффициента множественной детерминации.
По какому критерию оценивается значимость множественной корреляции?
Напишите линейное уравнение множественной регрессии.
Дайте графическую интерпретацию уравнения множественной регрессии.