
- •Основные условные обозначения в математической статистике
- •Содержание
- •Введение
- •Основы теории вероятностей
- •1Предмет и метод математической статистики
- •2Понятие случайного события
- •3Вероятность случайного события
- •4Основные теоремы теории вероятностей
- •4.1Сложение вероятностей
- •4.2Умножение вероятностей
- •4.3Вычисление вероятностей
- •Случайные переменные
- •5Понятие случайной переменной
- •5.1Дискретные случайные переменные
- •5.2Непрерывные случайные переменные
- •6Математическое ожидание и дисперсия
- •7Моменты
- •Дискретные распределения
- •8Биномиальное распределение и измерение вероятностей
- •9Распределение редких событий (Пуассона)
- •Основные модели теоретических распределений
- •10Прямоугольное (равномерное) распределение
- •11Нормальное распределение
- •12Логарифмически нормальное распределение
- •Распределения параметров выборки
- •13.1Проблема Беренса–Фишера
- •15Χ2–распределение
- •Основы математической статистики
- •16Средние величины
- •16.1Общие свойства средних величин
- •17Средняя арифметическая
- •17.1Средний ранг (непараметрическая средняя)
- •17.2Взвешенная средняя арифметическая
- •17.3Средняя квадратическая
- •17.4Мода
- •17.5Медиана
- •18Средняя геометрическая
- •19Средняя гармоническая
- •Разнообразие значений признака
- •20Стандартное (среднеквадратическое) отклонение
- •20.1Число степеней свободы
- •20.2Коэффициент вариации
- •20.3Лимиты и размах
- •20.4Приближенные значения μ и
- •20.5Нормированное отклонение
- •21Проверка выпадов (артефактов)
- •22Средняя и сигма суммарной группы
- •23Скошенность (асимметрия) и крутизна (эксцесс) кривой распределения
- •Графическое представление распределений
- •24Вариационный ряд
- •25Гистограмма и вариационная кривая
- •26Кумулята
- •27Достоверность различия распределений
- •27.1Критерий χ2 (хи квадрат)
- •27.2Критерий λ (лямбда)
- •27.3Критерий по асимметрии и эксцессу
- •Нормальное распределение
- •28Генеральная совокупность и выборка
- •29Репрезентативность
- •30Ошибки репрезентативности и другие ошибки исследований
- •31Доверительные границы
- •Оценка генеральных параметров
- •32Общий порядок оценки
- •32.1Оценка средней арифметической
- •32.2Оценка средней разности
- •32.3Недостоверная и достоверная оценка средней разности
- •32.4Оценка разности генеральных средних
- •33Критерий достоверности разности
- •34Репрезентативность при изучении качественных признаков
- •35Достоверность разности долей
- •Парная корреляция
- •36Коэффициент корреляции
- •37Ошибка коэффициента корреляции
- •37.1Достоверность выборочного коэффициента корреляции
- •37.2Доверительные границы коэффициента корреляции
- •37.3Достоверность разности двух коэффициентов корреляции
- •38Уравнение прямолинейной регрессии
- •39Ошибки элементов уравнения прямолинейной регрессии
- •Частная и множественная линейные корреляции и регрессии
- •40Частный коэффициент корреляции
- •41Множественный коэффициент корреляции
- •42Линейное уравнение множественной регрессии
- •Криволинейная корреляция и регрессия
- •43Корреляционное отношение
- •44Свойства корреляционного отношения
- •45Ошибка репрезентативности корреляционного отношения
- •46Критерий линейности корреляции
- •Однофакторный дисперсионный анализ
- •47Сущность и метод дисперсионного анализа
- •47.1Результативный признак
- •47.2Фактор
- •47.3Градации факторов
- •47.4Градации комплекса
- •47.5Дисперсионный комплекс
- •47.6Статистические влияния
- •47.7Факториальное влияние
- •47.8Случайное влияние
- •47.9Общее влияние
- •48Однофакторный дисперсионный комплекс
- •Многофакторный дисперсионный анализ
- •49Многофакторный дисперсионный комплекс
- •50Преобразования
- •51Универсальное использование дисперсий
- •51.1Показатели силы влияний
- •51.2Ошибка репрезентативности основного показателя силы влияния
- •51.3Предельные значения показателей силы влияния
- •51.4Достоверность влияний
- •Классификация
- •52Дискриминантный анализ
- •52.1Постановка задачи, методы решения, ограничения
- •52.2Предположения и ограничения
- •52.3Алгоритм дискриминантного анализа
- •53Кластерный анализ
- •53.1Методы кластерного анализа
- •53.2Алгоритм кластерного анализа
- •Литература
- •Приложение. Основные формулы и определения
- •2 46019, Г. Гомель, ул. Советская, 104
27.2Критерий λ (лямбда)
Критерий λ предложен советскими учеными А. Н. Колмогоровым и Н. В. Смирновым и может применяться для определения достоверности расхождения между фактическими и теоретическими распределениями, а также различий между любыми двумя распределениями частот одного и того же признака даже в том случае, когда число классов и число данных у этих распределений неодинаково. Для применения критерия лямбда не требуется определять число степеней свободы и не нужны таблицы для определения трех стандартных значений критерия, так для любого числа классов эти предельные значения одинаковы: 1,36 1,63; 1,95 и соответствуют обычным трем степеням вероятности достоверного различия: β1 = 0,95; β2 = 0,99; β2 = 0,999. Единственным условие применения критерия лямбда является достаточная численность сравниваемых распределений – не менее нескольких десятков данных.
Для сравнения эмпирического распределения с теоретическим при одинаковом числе классов и при одинаковой общей численности групп критерий лямбда определяется по формуле:
(8.2)
где |d|max – максимальная разность (без учета ее знака) между накопленными частотами в эмпирическом и теоретическом распределениях для одного и того же класса;
n – общее число данных, образовавших эмпирическое распределение.
Для определения
критерия лямбда требуется составить
ряды накопленных частот для обоих
сравниваемых распределений
и
,
взять наибольшую разность (без учета
ее знака) между этими величинами
и
полученную разность разделить на
.
Эмпирический критерий оценивается по трем постоянным стандартным значениям: 1,36 – 1,63 – 1,95. При этом применяется такой же обратный порядок порогов достоверности расхождения, как и при использовании критерия χ2.
Для выяснения достоверности различия между двумя любыми распределениями частот одного и того же признака при неодинаковом числе данных и классов критерий лямбда вычисляется по формуле:
(8.3)
– суммы накопленных
частот по каждому классу первого
распределения (начиная с меньшего),
деленные на общее число данных;
– то же по второму
распределению;
– максимальное
абсолютное значение (без учета знака)
разности частных от деления накопленных
частот на численности групп по каждому
классу, начиная с наименьшего;
n1, n2 – общее число данных по первому и второму распределениям.
27.3Критерий по асимметрии и эксцессу
Некоторые признаки растений, животных и микроорганизмов при объединении объектов в группы дают распределения, значительно отличающиеся от нормального.
В тех случаях, когда какие-нибудь причины благоприятствуют появлению значений признака, отличающихся от средней величины в сторону уменьшения или увеличения, образуются асимметричные распределения. При асимметрии эмпирическое распределение имеет увеличенные (против симметричного расположения) частоты в левой или правой части. В соответствии с этим различают или левую (положительная), или правую (отрицательная) асимметрию.
В тех случаях, когда какие-нибудь причины благоприятствуют преимущественному появлению и средних, и крайних значений признака, образуются положительные эксцессивные распределения, имеющие вид острой пирамиды с расширенным основанием. При отрицательном эксцессе в центре распределения имеется не вершина, а впадина, причем распределение становится двумодальным, а вариационная кривая – двувершинной.
В некоторых исследованиях требуется выяснить, действительно ли распределение изучаемого признака имеет асимметрию или эксцесс.
Например, при изучении ареалов распространения морских животных можно предположить, что распределение особей этого вида по глубине обитания должно быть, асимметричным, так как свободному распространению его водном из направлений – вверх – препятствует естественная граница: поверхность моря. Это предположение можно проверить, исследовав степень асимметричности распределений. Наличие эксцессивного распределения одного из жизненно важных признаков изучаемого вида животных или растений может указать на тенденцию этого вида образовывать не только обычные, типичные формы, также давать в повышенном количестве новые для него вариации, сильно отклоняющиеся от нормы.
Для выяснения достоверности того, что изучаемое распределение отличается от нормального именно в сторону асимметрии или эксцесса, применяют обычный в биометрии метод сравнения показателей с их ошибками репрезентативности.
Показатели асимметрии и эксцесса с их ошибками репрезентативности определяются по следующим формулам:
;
;
; (8.4)
;
;
, (8.5)
где А – показатель асимметрии;
– сумма кубов
отклонений от средней арифметической
(центральных отклонений);
3 – стандартное отклонение, возведенное в третью степень;
Е – показатель эксцесса;
– сумма четвертых
степеней центральных отклонений;
4 – четвертая степень среднего квадратического отклонения;
n – общее число данных в эмпирическом распределении;
sA, sE – ошибки репрезентативности показателей асимметрии и эксцесса;
tA, tE – критерии достоверности выборочных показателей асимметрии и эксцесса.
Показатели асимметрии и эксцесса свидетельствуют о достоверном отличии эмпирических распределений от нормального в том случае, если они превышают свою ошибку репрезентативности в три и более раз.
Вопросы для самоконтроля
Что является определяющим при составлении вариационного ряда: количество относительно одинаковых значений признака или само его значение?
Чем отличается построение гистограммы от графического изображения?
Какие значения указываются на осях координат при построении графика вариационных кривых?
Чему равны первое и последнее значения кумуляты?
Определение критерия χ2.
При каких условиях значений критерия χ2 нулевая гипотеза опровергается или подтверждается?
Определение критерия λ.
Каково условие при применении критерия лямбда по количеству данных?
Какой из критериев χ2 или λ обладает большей мощностью (чувствительностью)?
При каком условии показатели асимметрии и эксцесса свидетельствуют о достоверном отличии эмпирического распределения от нормального?