
- •1.1. Классификация электрических аппаратов.
- •1.2. Основные электротехнические материалы, применяемые в электроаппаратостроении (проводники, диэлектрики, магнитные припои, флюсы)
- •2.1. Электродинамические усилия в витке и катушке.
- •2.3.Электродинамические усилия на переменном токе в однофазных и трехфазных цепях. Динамическая стойкость аппаратов.
- •2.4. Электродинамические усилия между параллельными проводниками. Вывод формулы.
- •3.1 Общие сведения о магнитных цепях аппаратов и магнитных материалах: величины, характеризующие магнитные цепи, аналогия с электрическими цепями.
- •3.2. Тяговые силы в электромагнитах: расчет для электромагнита постоянного тока, статическая тяговая хар.
- •3.3. Сила тяги электромагнита переменного тока.
- •3.5. Обмотки электромагнитов постоянного тока (расчет).
- •3.6. Динамика электромагнита постоянного тока: изменение тока в обмотке при включении.
- •4.1. Магнитный усилитель: принцип действия, характеристика управления.
- •4.2. Технические характеристики магнитных усилителей
- •5.1 Нагрев контактов номинальным током и током короткого замыкания.
- •5.2. Переходное сопротивление контакта: явление стягивания линий тока, зависимость переходного сопротивления от материала и силы контактного нажатия.
- •5.3 Конструкции неразъемных контактов.
- •5.5 Конструкции контактов: врубные, розеточные, роликовые, торцевые.
- •6.1 Основные положения теории коммутации электрических цепей.
- •6.2 Процессы при ионизации и деионизации дугового промежутка.
- •6.5 Горение и гашение дуги переменного тока при отключении индуктивной цепи.
- •6.6 Условия гашения дуги постоянного тока.
- •6.7 Гашение открытой дуги в магнитном поле, способы возбуждения магнитного поля дугогашения.
- •6.9 6.10 Гашение дуги в дугогасительной решетке.
- •6.11. Способы гашения электрической дуги: механическое растягивание в продольных щелях, воздушных дутьем.
- •7.2 Командоаппараты: кнопки, универсальные переключатели, командоконтроллеры, путевые выключатели.
- •7.3 . Предохранители: устройство, согласование характеристик, выбор.
- •7.4. Магнитные пускатели: основные требования, конструкция и схема включения.
- •7.5 Контакторы постоянного и переменного тока: контактная система, электромагнит, дугогасительное устройство.
- •7.6 Контроллеры: плоские, барабанные, кулачковые. Устройство, назначение, отличия.
- •7 .7 Автоматические выключатели: классификация, принципиальная схема.
- •8.1 Тепловые реле: принцип действия, зависимость тока срабатывания от температуры окружающей среды.
- •8.2 Электромеханические реле. Классификация и основные хар-ки.
- •8.3 Электромеханические реле времени с электромагнитным замедлением: устройство, влияние различных факторов, схемы включения.
- •8.4 Зависимость коэффициента возврата электромеханических реле от различных факторов.
- •8.5. Электромагнитное реле тока и напряжения: согласование характеристик, конструкция.
- •8.6 Реле времени с механическим замедлением: пневматические, анкерные, моторные.
- •8.7 Поляризованные реле (расчет токовых сил).
- •8.8 Магнитоуправляемые контакты. Простейшие герконовые реле.
- •9.1. Емкостные датчики: принцип работы, схемы включения.
- •9.2 Тензодатчики: схема включения, вывод формулы чувствительности.
- •9.3 Индуктивный и индукционный датчики: принцип действия, область применения, отличия, схемы включения.
- •10.1. Полупроводниковые и цифровые реле времени.
- •10.2 Применение операционных усилителей в полупроводниковых реле.
- •10.3 Термисторы: схема включения, релейный эффект.
- •11.1 Гистерезисные муфты: устройство, принцип действия, механические характеристики.
- •11.2 Электромагнитные фрикционные муфты: устройство и принцип действия.
- •11.3 Ферропорошковые муфты: устройство, статические характеристики.
- •12.1 Приводы масляных выключателей: электромагнитный, пружинный, грузовой.
- •12.2 Приводы выключателей: электромагнитный, пружинно-грузовой, пневматический.
- •12.3 Воздушные выключатели: с открытым и воздухо-наполненным отделителями.
- •12.4. Баковые масляные выключатели: устройство, гашение дуги без использования и с дугогасительными камерами.
- •12.5 Маломасляные выключатели: назначение масла, конструкция.
- •12.6 Многообъемный масляный выключатель: гашение дуги, конструкция.
- •12.7 Разрядники: трубчатые и вентильные.
- •12.8 . Разъединители и приводы к ним: наружной и внутренней установки.
- •12.9 Отделители и короткозамыкатели: назначение, конструкция.
- •12.10 Реакторы: назначение, конструкция.
- •12.11 Выключатели нагрузки: назначение, устройство.
- •12.12 Комплектные распределительные устройства: кру, ксо.
- •12.13 Элегазовые выключатели: свойства элегаза, конструкция выключателя.
12.10 Реакторы: назначение, конструкция.
Реактор – это эл.аппарат в виде катушки с неизменной индуктивностью для ограничения токов КЗ и поддержания напряжения на шинах при аварийном режиме. При прохождении тока КЗ между реакторами и внутри реактора создаются эл-динамические силы, которые стремятся его разрушить. Механическая прочность
реактора харся ударным током Эл-динамической стойкости.
Одним
из основных параметров реактора является
его индуктивность L.
Для бетонных реакторов индуктивность
м/б определена по формуле Корндорфера.
Применение ферромагнитных магнитопроводов
позволяет резко снизить размеры реактора.
Однако при больших токах происходит
насыщение магнитопроводов и уменьшение
индуктивности, что уменьшает
токоограничивающий эффект реактора. В
связи с этим применение магнитопроводов
в токоограничивающих реакторов не
получило распространения. Реактор
потребляет из сети также реактивную
мощность, равную для трехфазного
комплекта
Основные
параметры реактора длит. номинальный
ток Iном.,р
,ток термической стойкости Iт,
отнесенный к опред-му времени tт,
ном. напряжение Uном,
реактивное соприе xр%,
ток динамической стойкости iуд.
Конструкция: Наиболее распрны бетонные реакторы. 3-х фазный комплект таких реакторов состоит из многожильного провода 1 соответствующего сечения намотаны катушки реакторов A,B,C. Заливкой в специальные формы получаются бетонные вертикальные стойки – колонны 2, которые скрепляют между собой отдельные катушки. Торцы колонн имеют шпильки с изоляторами 3,4. При больших ном. токах (более 400 А) примен-ся несколько парал-ых ветвей. Для равномерного распр-ия тока по ветвям примен-ся транспозиция витков. Все витки ветвей д/б одинаково расп-ны относит-но оси реактора. В качестве обмоточного провода исп-ся многожильный медный или Al кабель большого сечения. Охл-ие реакторов естеств-ое. В трехфазном комплекте наибольшему нагреву подверг-ся верхний реактор, поскольку подходящий снизу воздух уже подогрет реакторами, располож-ми ниже. Мощное магнитное поле реактора замыкается вокруг обмотки. Расст-ие между реакторами опред-тся высотой опорных изоляторов. В наиболее тяжелых условиях работают изоляторы верхнего реактора. В реакторах на большие токи Эл-динамические силы при вертик-ой установке в аварийном режиме столь велики, что изоляторы не могут обеспечить необх-ую Эл-динамическую стойкость. В этих случаях приходится прибегать к горизонт-ой установке реакторов. Бетонные реакторы примен-ся в закрытых распред-ых устр-вах при напр-ии не выше 35 кВ. Недостатком их яв-ся большие габариты. Ведутся работа по устранению этого недостатка – применением соврем-ых изоляц-ых материалов.
При напряжении более 35 кВ и для установки на открытой части подстанций применяется реакторы в масляном исполнении. В стальной бак 1 с трансф-ым маслом погружена обмотка 2. Применение масла позволяет уменьшить изоляц-ые расст-ия м/у обмоткой и заземленными частями реактора и улучшить охл-ние обмотки за счет конвекции масла. В рез-те масса и габаритные размеры аппарата уменьш-тся. Выводы обмотки присоед-ются к контактам проходных изоляторов 4. В настоящее время разраб-ны тороидальные реакторы. Как и в магн.усилителях, обмотка такого реактора имеет тороидальную форму, но не сод-т магнитопровод. При такой форме обмотки внешнее поле рассеяния практически отсут-ет и нагрев бака не возникает. Тороидальные реакторы на напряжение 110 кВ и выше имеют более высокие технические и экономические показатели масляного реактора.