
- •1.1. Классификация электрических аппаратов.
- •1.2. Основные электротехнические материалы, применяемые в электроаппаратостроении (проводники, диэлектрики, магнитные припои, флюсы)
- •2.1. Электродинамические усилия в витке и катушке.
- •2.3.Электродинамические усилия на переменном токе в однофазных и трехфазных цепях. Динамическая стойкость аппаратов.
- •2.4. Электродинамические усилия между параллельными проводниками. Вывод формулы.
- •3.1 Общие сведения о магнитных цепях аппаратов и магнитных материалах: величины, характеризующие магнитные цепи, аналогия с электрическими цепями.
- •3.2. Тяговые силы в электромагнитах: расчет для электромагнита постоянного тока, статическая тяговая хар.
- •3.3. Сила тяги электромагнита переменного тока.
- •3.5. Обмотки электромагнитов постоянного тока (расчет).
- •3.6. Динамика электромагнита постоянного тока: изменение тока в обмотке при включении.
- •4.1. Магнитный усилитель: принцип действия, характеристика управления.
- •4.2. Технические характеристики магнитных усилителей
- •5.1 Нагрев контактов номинальным током и током короткого замыкания.
- •5.2. Переходное сопротивление контакта: явление стягивания линий тока, зависимость переходного сопротивления от материала и силы контактного нажатия.
- •5.3 Конструкции неразъемных контактов.
- •5.5 Конструкции контактов: врубные, розеточные, роликовые, торцевые.
- •6.1 Основные положения теории коммутации электрических цепей.
- •6.2 Процессы при ионизации и деионизации дугового промежутка.
- •6.5 Горение и гашение дуги переменного тока при отключении индуктивной цепи.
- •6.6 Условия гашения дуги постоянного тока.
- •6.7 Гашение открытой дуги в магнитном поле, способы возбуждения магнитного поля дугогашения.
- •6.9 6.10 Гашение дуги в дугогасительной решетке.
- •6.11. Способы гашения электрической дуги: механическое растягивание в продольных щелях, воздушных дутьем.
- •7.2 Командоаппараты: кнопки, универсальные переключатели, командоконтроллеры, путевые выключатели.
- •7.3 . Предохранители: устройство, согласование характеристик, выбор.
- •7.4. Магнитные пускатели: основные требования, конструкция и схема включения.
- •7.5 Контакторы постоянного и переменного тока: контактная система, электромагнит, дугогасительное устройство.
- •7.6 Контроллеры: плоские, барабанные, кулачковые. Устройство, назначение, отличия.
- •7 .7 Автоматические выключатели: классификация, принципиальная схема.
- •8.1 Тепловые реле: принцип действия, зависимость тока срабатывания от температуры окружающей среды.
- •8.2 Электромеханические реле. Классификация и основные хар-ки.
- •8.3 Электромеханические реле времени с электромагнитным замедлением: устройство, влияние различных факторов, схемы включения.
- •8.4 Зависимость коэффициента возврата электромеханических реле от различных факторов.
- •8.5. Электромагнитное реле тока и напряжения: согласование характеристик, конструкция.
- •8.6 Реле времени с механическим замедлением: пневматические, анкерные, моторные.
- •8.7 Поляризованные реле (расчет токовых сил).
- •8.8 Магнитоуправляемые контакты. Простейшие герконовые реле.
- •9.1. Емкостные датчики: принцип работы, схемы включения.
- •9.2 Тензодатчики: схема включения, вывод формулы чувствительности.
- •9.3 Индуктивный и индукционный датчики: принцип действия, область применения, отличия, схемы включения.
- •10.1. Полупроводниковые и цифровые реле времени.
- •10.2 Применение операционных усилителей в полупроводниковых реле.
- •10.3 Термисторы: схема включения, релейный эффект.
- •11.1 Гистерезисные муфты: устройство, принцип действия, механические характеристики.
- •11.2 Электромагнитные фрикционные муфты: устройство и принцип действия.
- •11.3 Ферропорошковые муфты: устройство, статические характеристики.
- •12.1 Приводы масляных выключателей: электромагнитный, пружинный, грузовой.
- •12.2 Приводы выключателей: электромагнитный, пружинно-грузовой, пневматический.
- •12.3 Воздушные выключатели: с открытым и воздухо-наполненным отделителями.
- •12.4. Баковые масляные выключатели: устройство, гашение дуги без использования и с дугогасительными камерами.
- •12.5 Маломасляные выключатели: назначение масла, конструкция.
- •12.6 Многообъемный масляный выключатель: гашение дуги, конструкция.
- •12.7 Разрядники: трубчатые и вентильные.
- •12.8 . Разъединители и приводы к ним: наружной и внутренней установки.
- •12.9 Отделители и короткозамыкатели: назначение, конструкция.
- •12.10 Реакторы: назначение, конструкция.
- •12.11 Выключатели нагрузки: назначение, устройство.
- •12.12 Комплектные распределительные устройства: кру, ксо.
- •12.13 Элегазовые выключатели: свойства элегаза, конструкция выключателя.
12.8 . Разъединители и приводы к ним: наружной и внутренней установки.
Для внутренних установок, не подверженных воздействию атмосферы и с напряжением, как правило, не выше 20 кВ, наиболее широко распространены рубящие разъединители с движением подвижного контакта (ножа) в вертикальной плоскости. Для получения электродинамической стойкости контактов необходимо соответствующее контактное нажатие. С ростом тока контактное нажатие и усилие, необходимое для включения, возрастают. При ручных приводах контактные нажатия стремятся брать возможно малыми. С этой целью применяют сдвоенные ножи и электромагнитные замки. Для повышения электродинамической стойкости контактов разъединителей широко используются электродинамические силы, возникающие в токоведущих элементах. Подвижный контакт выполнен в виде двух параллельных шип. При КЗ электродинамическая сила прижимает шипы к стоикам неподвижного контакта. При номинальном токе контактное нажатие создается пружинами, которые воздействуют на подвижный контакт через стальные пластины. Магнитный поток, создаваемый проходящим по шинам током, замыкается вокруг них и через стальные пластины. В системе возникают электродинамические силы такого направления, чтобы возросла энергия магнитного поля. Пластины приближаются к шинам и попадают в зону более сильного магнитного поля. Электромагнитная энергия при этом возрастает. Таким образом, создается сила, притягивающая стальные пластины к шинам и увеличивающая контактное нажатие. Для управления разъединителями типа РВ применяются рычажные системы с ручным или моторным приводом. При токах более 3 кА рычаг заменяется червячной передачей, что позволяет увеличить действующую на шины силу. Для дистанционного управления применяются электрические и пневматические приводы. В электрических приводах ось двигателя связывается с выходным рычагом привода через систему червячной передачи.
В пневматическом приводе отсутствуют громоздкие рычажные передачи, и обеспечивается плавный ход контактов. К разъединителю подводятся трубопровод со сжатым воздухом и цепи управления электромагнитами. Для наружной установки широко используются разъединители поворотного типа РНД. Разъединители такого типа применяются при напряжении до 750 кВ.
12.9 Отделители и короткозамыкатели: назначение, конструкция.
В настоящее время начинают широко применяться высоковольтные подстанции без выключателей на питающей линии. Это позволяет удешевить и упростить оборудование при сохранении высокой надежности. Для замены выключателей на стороне высокого напряжения исп-ся короткозамыкатели и отделители. Короткозамыкатель – это быстродействующий контактный аппарат, с помощью которого по сигналу релейной защиты создается искусственное КЗ сети. Отделитель пред-т собой разъединитель, который быстро отключает обесточенную цепь после подачи команды на его привод. В отделители процесс отключения длится 0,5-1 с. На стальной коробке 1 установлен опорный изолятор 2. Вверху опорного изолятора расположен неподвижный контакт 3, находящийся под высоким напряжением. Подвижный заземленный контакт – нож 4 укреплен на валу 5 привода короткозамыкателя. Для создания необходимой прочности нож 4 имеет ребро жесткости 6. Основание 1 изолировано от земли и присоединяется к одному концу первичной обмотки трансформатора тока, второй конец которой заземлен. На вал 5 действует пружина привода, которая заводится в отключенном состоянии. Для включения подается команда на электромагнит привода, который освобождает защелку механизма. Под действием пружины нож перемещается в вертикальной плоскости вверх и заземляет контакт 3. Время включения короткозамыкателя 0,15-0,25с
В основу конструкции отделителя )Д-110У на 110 кВ положен двухколонковый разъединитель с вращением ножей 1 в горизонтальной плоскости. Приведение в движение колонок 2 осуществляется пружинным приводом 3 с электромагнитным управлением. Во включ.положении пружины привода заведены. При подаче команды пружина освобождается и контакты расходятся за время 0,4-0,5 с.
Эти конструкции короткозамыкателей и отделителей имеют большое время срабатывания (0,5-1с), что удовл.современные требования к энергосистемам. Рассмотренные аппараты не обесп-т также достаточную надежность работы при гололеде и сильных морозах.
Наиболее надежным короткозамыкателем яв-ся элегазовый короткозамыкатель. Он защищен от климатич. Воздействий окр.среды. Время срабатыв. в 4-5 раз меньше, чем у существующих короткозамыкателей открытого типа.