
- •1. Естествознание
- •2.Естествознание – основа современной наукоемкой технологии. Технологии(понятие, история, классификация). Научно – технические революции. Жизненный цикл технологии.
- •6. Фундаментальные взаимодействия.
- •7.Механика как основа многих технологий. Основные законы и понятия механики.
- •9.Применение фазовых переходов в технике и технологиях.
- •10. Элементная база компьютера. Развитие твердотельной электроники. Технологии микроэлектроники. Развитие нанотехнологии.
- •11. Основные представления современной химии. Эволюционная химия. Синтез новых материалов и применение новых материалов в технике и технологиях.
- •12 Взаимосвязь атомо-молекулярных строение и химичиских св веществ.Трансурановые элементы
- •14. Естественно-научные основы лазерных технологий. Особенности лазерного излучения. Применение лазеров в технике и технологиях.
- •15Современные представления об эволюции Вселенной, галактик, звезд и звездных систем.
- •16. Солнечная система, законы Кеплера, парадоксы.
- •18 Самоорганизация систем. Синергетика
- •19.Термодинамический парадокс Основные понятия термодинамики. Первое и второе начало термодинамики.
- •21. Концепция: заряд и поле. Электрическое поле и его законы. Напряженность, электрическая индукция. Взаимодействие зарядов, взаимодействие токов, принцип суперпозиции.
- •24Металлургические технологии.
- •25Классификация двигателей и принципы их работы.
- •27 Энергетическое машиностроение. Станкостроение. Робототехника.
- •29Машиностроительные технологии.
- •30Основные научные достижения в биологии и генетике. Роль днк и рнк в системе управления генетической информацией. Наследственность и изменчивость.
- •31 Ген. Геном. Генотип. Генная инженерия. Клонирование.
9.Применение фазовых переходов в технике и технологиях.
Фазовый переход (фазовое превращение) в термодинамике — переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.
При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём, количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т.п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов).
Наиболее распространённые примеры фазовых переходов первого рода:
плавление и кристаллизация
испарение и конденсация
сублимация и десублимация
При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их производные по температуре и давлению: теплоёмкость, коэффициент теплового расширения, различные восприимчивости и т.д.
Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке перехода параметра порядка, равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.
Наиболее распространённые примеры фазовых переходов второго рода:
прохождение системы через критическую точку
переход парамагнетик-ферромагнетик или парамагнетик-антиферромагнетик (параметр порядка - намагниченность)
переход металлов и сплавов в состояние сверхпроводимости (параметр порядка - плотность сверхпроводящего конденсата)
переход жидкого гелия в сверхтекучее состояние (п.п. - плотность сверхтекучей компоненты)
переход аморфных материалов в стеклообразное состояние
10. Элементная база компьютера. Развитие твердотельной электроники. Технологии микроэлектроники. Развитие нанотехнологии.
Основными вехами развития электронной промышленности в мире стало создание транзистора (1947), интегральных схем (1958) и микропроцессора (1971), ознаменовавшими второе, третье и четвертое поколения компьютеров.
Изобретателем транзистора является американский физик Уильям Шокли (Chockley) (1910-1989). В 1947 г. ему вместе с Дж. Бардином и У. Браттейном удалось получить точечный транзистор, а в 1951 г. первый плоскостной германиевый транзистор. В 1954 г. Гордон Тил разработал первый биполярный кремниевый транзистор. Появление КМОП-транзисторов относят к 1962 г.
Изобретателями первых интегральных схем (в виде системы взаимосвязанных транзисторов на единой кремниевой пластине) были Роберт Нойс (Robert Noyce) (1927-1990) из компании Fairchild Semiconductor и независимо от него Джек Килби (Kilby) из компании Texas Instruments. Более удачными были признаны схемы Нойса.
В 1968 г. Р.Нойс и Г.Мур основали компанию Intel (сокращение от Integrated Electronics), а в следующем году — Дж. Сандерс создает компанию AMD (Advanced Micro Devices). Этим компаниям суждено конкурировать на рынке микропроцессоров.
В 1970 г. появляются первые SPLD схемы и 256-битная SRAM память. Создание первых EPROM и EEPROM относится соответственно к 1971 и 1983 годам.
Первый микропроцессор 4004 разработан и изготовлен в 1971 г в компании Intel с помощью инженера из Стэнфорда Т. Хоффа.
К числу ведущих компаний электронной промышленности в США относится также Motorola. В 1949 г. компания приступает к выпуску полупроводниковых приборов. В 1979 г. Motorola разрабатывает свой первый 16-битный микропроцессор 68000, а в 1984 г. — первый 32-битный микропроцессор MC68020, в котором содержится около 200000 транзисторов, обеспечивающих доступ к памяти до 1 миллиарда бит.
В 1984 г. создаются первые компании, специализирующиеся на производстве ПЛИС. Это Altera и Xilinx. В 1985 г. в Xilinx разрабатывается первая FPGA схема.
Микропроцессор Power PC создается совместными усилиями компаний Apple Computer, IBM и Motorola в 1993 г., в нем используется RISC-технология.
Если проследить судьбы американцев, то Джон Бардин ушел из Bell Telephone Laboratories в 1951 году, занялся теорией сверхпроводимости и в 1972 году вместе с двумя своими учениками был удостоен Нобелевской премии «За разработку теории сверхпроводимости», став, таким образом, единственным в истории ученым, дважды нобелевским лауреатом.
Уолтер Браттейн проработал в Bell Telephone Laboratories до выхода на пенсию в 1967 году, а затем вернулся в свой родной город и занялся преподаванием физики в местном университете.
Судьба Уильяма Шокли сложилась следующим образом. Он покидает Bell Telephone Laboratories в 1955 году и, при финансовой помощи Арнольда Бекмана, основывает фирму по производству транзисторов — Shockly Transistor Corporation. На работу в новую компанию переходят многие талантливые ученые и инженеры, но через два года большинство из них уходят от Шокли. Заносчивость, высокомерие, нежелание прислушиваться к мнению коллег и навязчивая идея не повторить ошибку, которую он допустил в работе с Бардиным и Браттейном, делают свое дело. Компания разваливается.
Его бывшие сотрудники Гордон Мур и Роберт Нойс при поддержке того же Бекмана основывают фирму Fairchild Semiconductor, а затем, в 1968 году создают собственную компанию — Intel.
Мечта Шокли построить полупроводниковую бизнес-империю была претворена в жизнь другими, а ему опять досталась роль стороннего наблюдателя. Ирония судьбы заключается в том, что еще в 1952 году именно Шокли предложил конструкцию полевого транзистора на основе кремния. Тем не менее, компания Shockly Transistor Corporation не выпустила ни одного полевого транзистора. Сегодня это устройство является основой всей компьютерной индустрии.
После неудачи в бизнесе Шокли становится преподавателем в Стэндфордском университете. Он читает блестящие лекции по физике, лично занимается с аспирантами, но ему не хватает былой славы — всего того, что американцы называют емким словом publicity. Шокли включается в общественную жизнь и начинает выступать с докладами по многим социальным и демографическим вопросам. Предлагая решения острых проблем, связанных с перенаселением азиатских стран и национальными различиями, он скатывается к евгенике и расовой нетерпимости.
Пресса, телевидение, научные журналы обвиняют его в экстремизме и расизме. Шокли снова «знаменит» и, похоже, испытывает удовлетворение от всего происходящего. Его репутации и карьере ученого приходит конец. Он выходит на пенсию, перестает со всеми общаться, даже с собственными детьми, и доживает жизнь затворником.
Разные люди, разные судьбы, но всех их объединяет причастность к открытию, коренным образом изменившему наш мир.
Дату 19 декабря 1947 года можно по праву считать днем рождения новой эпохи. Начался отсчет нового времени. Мир шагнул в эру цифровых технологий.