Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физиология ответы.doc
Скачиваний:
17
Добавлен:
24.04.2019
Размер:
1 Mб
Скачать

28. Возрастные особенности крови и кровообращения

7.1. Общая характеристика крови Кровь, лимфа и тканевая жидкость являются внутренней средой организма, в которой осуществляется жизнедеятельность клеток, тканей и органов. Внутренняя среда человека сохраняет относительное постоянство своего состава, которое обеспечивает устойчивость всех функций организма и является результатом рефлекторной и нервно-гуморальной саморегуляции. Кровь, циркулируя в кровеносных сосудах, выполняет ряд жизненно важных функций: транспортную (транспортирует кислород, питательные вещества, гормоны, ферменты, а также доставляет остаточные продукты обмена веществ к органам выделения), регуляторную (поддерживает относительное постоянство температуры тела), защитную (клетки крови обеспечивают реакции иммунного ответа).Количество крови. Депонированная и циркулирующая кровь. Количество крови у взрослого человека составляет в среднем 7 % веса тела, у новорожденных – от 10 до 20 % веса тела, у грудных детей – от 9 до 13 %, у детей с 6 до 16 лет – 7 %. Чем младше ребенок, тем выше его обмен веществ и тем больше количество крови на 1 кг веса тела. У новорожденных на 1 кг веса тела приходится 150 куб. см крови, у грудных детей – 110 куб. см, у детей с 7 до 12 лет – 70 куб. см, с 15 лет – 65 куб. см. Количество крови у мальчиков и мужчин относительно больше, чем у девочек и женщин. В покое приблизительно 40–45 % крови циркулирует в кровеносных сосудах, а остальная ее часть находится в депо (капиллярах печени, селезенки и подкожной клетчатки). Кровь из депо поступает в общее кровяное русло при повышении температуры тела, мышечной работе, подъеме на высоту, при кровопотерях. Быстрая потеря циркулирующей крови опасна для жизни. Например, при артериальном кровотечении и потере 1/3-1/2 всего количества крови наступает смерть вследствие резкого падения кровяного давления.Плазма крови. Плазма представляет собой жидкую часть крови после отделения всех форменных элементов. На ее долю у взрослых приходится 55–60 % общего объема крови, у новорожденных – меньше 50 % вследствие большого объема эритроцитов. В плазме крови взрослого человека содержится 90–91 % воды, 6,6–8,2 % белков, из которых 4–4,5 % альбумина, 2,8–3,1 % глобулина и 0,1–0,4 % фибриногена; остальную часть плазмы составляют минеральные вещества, сахар, продукты обмена веществ, ферменты, гормоны. Содержание белков в плазме новорожденных – 5,5–6,5 %, у детей до 7 лет – 6–7 %.С возрастом количество альбуминов уменьшается, а глобулинов увеличивается, общее содержание белков приближается к уровню взрослых к 3–4 годам. Гамма-глобулины доходят до нормы взрослых к 3 годам, альфа– и бета-глобулины – к 7 годам. Содержание в крови протеолитических ферментов после рождения повышается и к 30-му дню жизни достигает уровня взрослых.К минеральным веществам крови относятся поваренная соль (NaCl), 0,85-0,9 %, хлористый калий (КС1), хлористый кальций (СаС12) и бикарбонаты (NaHCO3), по 0,02 %, и др. У новорожденных количество натрия меньше, чем у взрослых, и доходит до нормы к 7–8 годам. С 6 до 18 лет содержание натрия колеблется от 170 до 220 мг%. Количество калия, наоборот, наиболее высокое у новорожденных, самое низкое – в 4–6 лет и достигает нормы взрослых к13-19 годам.Содержание кальция в плазме у новорожденных выше, чем у взрослых; с 1 до 6 лет оно колеблется, а с 6 до 18 лет стабилизируется на уровне взрослых.У мальчиков 7-16 лет неорганического фосфора больше, чем у взрослых, в 1,3 раза; органического фосфора больше, чем неорганического, в 1,5 раза, но меньше, чем у взрослых.Количество глюкозы в крови взрослого человека натощак составляет 0,1–0,12 %. Количество сахара в крови у детей (мг%) натощак: у новорожденных – 45–70; у детей 7-11 лет – 70–80; 12–14 лет – 90-120. Изменение содержания сахара в крови у детей 7–8 лет значительно больше, чем в 17–18 лет. Значительны колебания содержания сахара в крови в период полового созревания. При интенсивной мышечной работе уровень сахара в крови снижается.Кроме того, в плазме крови содержатся разные азотистые вещества, составляющие 20–40 мг на 100 куб. см крови; 0,5–1,0 % жира и жироподобных веществ.Вязкость крови взрослого человека составляет 4–5, новорожденного – 10–11, ребенка первого месяца жизни – 6, затем наблюдается постепенное снижение вязкости. Активная реакция крови, зависящая от концентрации водородных и гидроксильных ионов, слабощелочная. Средний рН крови – 7,35. При поступлении в кровь кислот, образующихся в процессе обмена веществ, они нейтрализуются резервом щелочей. Некоторые кислоты удаляются из организма, например углекислота превращается в углекислый газ и водяные пары, выдыхаемые при усиленной вентиляции легких. При избыточном накоплении в организме щелочных ионов, например при вегетарианской диете, они нейтрализуются угольной кислотой, задержанной при уменьшении вентиляции легких.

7.2. Форменные элементы крови К форменным элементам крови относят эритроциты, лейкоциты и тромбоциты. Эритроцитами называются безъядерные красные кровяные клетки крови. Они имеют двояковогнутую форму, которая увеличивает их поверхность примерно в 1,5 раза. Количество эритроцитов в 1 куб. мм крови равно: у мужчин – 5–5,5 млн; у женщин – 4–5,5 млн. У новорожденных в первый день жизни их количество доходит до 6 млн, затем происходит снижение до нормы взрослого человека. В 7–9 лет число эритроцитов равно 5–6 млн. Наибольшие колебания количества эритроцитов наблюдаются в период полового созревания.В эритроцитах взрослого человека гемоглобин составляет около 32 % от веса форменных элементов и в среднем 14 % от веса цельной крови (14 г на 100 г крови). Это количество гемоглобина приравнивается к 100 %. Содержание гемоглобина в эритроцитах новорожденных достигает 14,5 % нормы взрослого человека, что составляет 17–25 г гемоглобина на 100 г крови. В первые два года количество гемоглобина падает до 80–90 %, а затем снова возрастает до нормы. Относительное содержание гемоглобина с возрастом увеличивается и к 14–15 годам доходит до нормы взрослого. Оно равно (в граммах на 1 кг веса тела)в 7–9 лет – 7,5,10–11 лет – 7,4;12–13 лет – 8,4;14–15 лет – 10,4.Гемоглобин имеет видовую специфичность. Если у новорожденного он поглощает кислорода больше, чем у взрослого (а с 2 лет эта способность гемоглобина максимальна), то с 3 лет гемоглобин поглощает кислород так же, как и у взрослых. Значительное содержание эритроцитов и гемоглобина, а также большая способность гемоглобина поглощать кислород у детей до 1 года обеспечивают им более интенсивный обмен веществ.С возрастом количество кислорода в артериальной и венозной крови увеличивается. 0но равняется (в куб. см в минуту): у детей 5–6 лет в артериальной крови – 400, в венозной – 260; у подростков 14–15 лет – соответственно 660 и 435; у взрослых – соответственно 800 и 540. Содержание кислорода в артериальной крови (в куб. см на 1 кг веса в минуту) равно: у детей 5–6 лет – 20; у подростков 14–15 лет – 13; у взрослых – 11. Это явление у дошкольников объясняется относительно большим количеством крови и кровотоком, существенно превышающим кровоток взрослых.Помимо переноса кислорода, эритроциты участвуют в ферментативных процессах, в сохранении активной реакции крови и в обмене воды и солей. В течение суток через эритроциты проходит от 300 до 2000 куб. дм воды.В процессе отстаивания цельной крови, к которой добавлены вещества, препятствующие свертыванию крови, эритроциты постепенно оседают. Скорость реакции оседания эритроцитов (СОЭ) у мужчин составляет 3–9 мм, у женщин – 7-12 мм в час. С0Э зависит от количества белков в плазме крови и от отношения глобулинов к альбуминам. Поскольку у новорожденного в плазме около 6 % белков и отношение количества глобулинов к альбуминам тоже меньше, чем у взрослых, то СОЭ у них – около 2 мм, у грудных детей – 4–8 мм, а у более старших детей – 4–8 мм в час. После учебной нагрузки у большинства детей 7-11 лет нормальная (до 12 мм в час) и замедленная СОЭ ускоряются, а ускоренная СОЭ замедляется.Гемолиз. Эритроциты способны сохраняться только в физиологических растворах, в которых концентрация минеральных веществ, особенно поваренной соли, такая же, как и в плазме крови. В растворах, где содержание поваренной соли меньше или больше, чем в плазме крови, а также под влиянием других факторов эритроциты разрушаются. Разрушение эритроцитов называется гемолизом.Способность эритроцитов противостоять гемолизу называется резистентностью. С возрастом резистентность эритроцитов значительно снижается: наибольшей резистентностью обладают эритроциты новорожденных, к 10 годам она уменьшается примерно в 1,5 раза.В здоровом организме происходит постоянный процесс разрушения эритроцитов, который осуществляется под воздействием особых веществ – гемолизинов, вырабатываемых в печени. Эритроциты живут у новорожденного 14, а у взрослого – не больше 100–150 дней. Гемолиз происходит в селезенке и печени. Одновременно с гемолизом образуются новые эритроциты, поэтому количество эритроцитов поддерживается на относительно постоянном уровне.Группы крови. В зависимости от содержания в эритроцитах двух видов склеиваемых веществ (агглютиногенов А и B), а в плазме – двух видов агглютининов (альфа и бета) – выделяют четыре группы крови. При переливании крови необходимо избегать совпадения А с альфой и В с бетой, потому что происходит агглютинация, ведущая к закупорке кровеносных сосудов и предшествующая гемолизу у реципиента, а следовательно, ведущая к его смерти.Эритроциты первой группы (0) не склеиваются плазмой других групп, что позволяет вводить их всем людям. Люди, имеющие первую группу крови, называются универсальными донорами. Плазма четвертой группы (АВ) не склеивает эритроциты других групп, поэтому люди, имеющие эту группу крови, являются универсальными реципиентами. Кровь второй группы (А) можно переливать только группам А и АВ, кровь группы В – только В и АВ. Группа крови обусловлена генетически.Кроме того, в практике переливания крови особое значение имеет агглютиноген резус-фактор (Rh). Эритроциты 85 % людей содержат резус-фактор (резус-положительные), в то время как эритроциты 15 % людей не содержат его (резус-отрицательные).Лейкоциты. Это бесцветные ядерные клетки крови. У взрослого человека в 1 куб. мм крови содержится 6–8 тыс. лейкоцитов. По форме клетки и ядра лейкоциты делятся на: нейтрофилы; базофилы; эозинофилы; лимфоциты; моноциты.В отличие от взрослых у новорожденных в 1 куб. мм крови содержится 10–30 тыс. лейкоцитов. Самое большое количество лейкоцитов наблюдается у детей в возрасте 2–3 месяцев, а затем оно постепенно волнообразно уменьшается и к 10–11 годам достигает уровня взрослых.

У детей до 9-10 лет относительное содержание нейтрофилов значительно меньше, чем у взрослых, а количество лимфоцитов резко увеличено до 14–15 лет. До 4 лет абсолютное количество лимфоцитов превышает количество нейтрофилов примерно в 1,5–2 раза, с 4 до 6 лет количество нейтрофилов и лимфоцитов сначала сравнивается, а затем нейтрофилы начинают преобладать над лимфоцитами, и с 15 лет их отношение приближается к нормам взрослых. Лейкоциты живут до 12–15 дней.В отличие от эритроцитов содержание лейкоцитов сильно колеблется. Различают увеличение общего количества лейкоцитов (лейкоцитоз) и их уменьшение (лейкопению). Лейкоцитоз наблюдается у здоровых людей при мышечной работе, в первые 2–3 ч после приема пищи и у беременных. У лежащего человека лейкоцитоз в два раза больше, чем у стоящего. Лейкопения возникает при действии ионизирующего излучения. Некоторые заболевания изменяют относительное содержание разных форм лейкоцитов.Тромбоциты. Это мельчайшие безъядерные пластинки протоплазмы. У взрослых в 1 куб. мм крови содержится 200–100 тыс. тромбоцитов, у детей до 1 года – 160–330 тыс.; от 3 до 4 лет – 350–370 тыс. Тромбоциты живут 4–5 и не более 8–9 дней. В составе сухого остатка тромбоцитов содержатся 16–19 % липидов (в основном фосфатидов), протеолитические ферменты, серотонин, факторы свертывания крови и ретрактин. Увеличение количества тромбоцитов называется тромбоцитозом, уменьшение – тромбопенией.

7.3. Кровообращение Кровь способна выполнять жизненно важные функции, только находясь в постоянном движении. Движение крови в организме, ее циркуляция составляют сущность кровообращения.Система органов кровообращения поддерживает постоянство внутренней среды организма. Благодаря кровообращению ко всем органам и тканям поступают кислород, питательные вещества, соли, гормоны, вода и выводятся из организма продукты обмена. Из-за малой теплопроводности тканей передача тепла от органов человеческого тела (печени, мышц и др.) к коже и в окружающую среду осуществляется в основном за счет кровообращения. Деятельность всех органов и организма в целом тесно связана с функцией органов кровообращения.Большой и малый круги кровообращения. Кровообращение обеспечивается деятельностью сердца и кровеносных сосудов. Сосудистая система состоит из двух кругов кровообращения: большого и малого.Большой круг кровообращения начинается от левого желудочка сердца, откуда кровь поступает в аорту. Из аорты путь артериальной крови продолжается по артериям, которые по мере удаления от сердца ветвятся, и самые мелкие из них распадаются на капилляры, густой сетью пронизывающие весь организм. Через тонкие стенки капилляров кровь отдает питательные вещества и кислород в тканевую жидкость. Продукты жизнедеятельности клеток при этом из тканевой жидкости поступают в кровь. Из капилляров кровь поступает в мелкие вены, которые, сливаясь, образуют более крупные вены и впадают в верхнюю и нижнюю полые вены. Верхняя и нижняя полые вены приносят венозную кровь в правое предсердие, где заканчивается большой круг кровообращения.Малый круг кровообращения начинается от правого желудочка сердца легочной артерией. Венозная кровь по легочной артерии приносится к капиллярам легких. В легких происходит обмен газов между венозной кровью капилляров и воздухом в альвеолах легких. От легких по четырем легочным венам уже артериальная кровь возвращается в левое предсердие, где малый круг кровообращения заканчивается. Из левого предсердия кровь попадает в левый желудочек, откуда начинается большой круг кровообращения.

.1.3. Возрастные особенности кровиУ новорожденных и детей гемограмма и лейкоцитарная формула отличаются от таковых у взрослых.Гемограмма новорожденных: 1) эритроцитов 6–7 1012/л (эритроцитоз); 2) лейкоцитов 10–30 109/л (лейкоцитоз); 3) тромбоцитов 200–300 109/л, т. е. как у взрослых. Через 2 нед содержание эритроцитов приближается к показателям взрослых (около 5,0 • 1012/л). Спустя 3–6 мес число эритроцитов уменьшается (менее 4–5 • 1012/л) – физиологическая анемия, а затем постепенно достигает показателей у взрослых к периоду полового созревания.Содержание лейкоцитов у детей через 2 нед после рождения снижается до 9—15 109/л и к периоду полового созревания достигает показателя у взрослых.Лейкоцитарная формула новорожденных. Наибольшие изменения в лейкоцитарной формуле отмечаются в содержании нейтрофилов и лимфоцитов. Остальные показатели существенно не отличаются от показателей у взрослых (табл. 5.1).

Таблица 5.1. Лейкоцитарная формула5.2. кроветворение

Кроветворение (гемоцитопоэз) – процесс образования форменных элементов крови. Различают два вида кроветворения: миелоидное и лимфоидное. В свою очередь в миелоидном кроветворении выделяют: а) эритроцитопоэз; б) гранулоцитопоэз; в) тромбоцитопоэз; г) моноцитопоэз, а в лимфоидном: а) Т-лимфоцитопоэз; б) В-лимфоцитопоэз; в) NK-цитопоэз.Кроме того, гемоцитопоэз подразделяется на два периода: эмбриональный и постэмбриональный. В эмбриональном периоде гемоцитопоэза происходит образование крови как ткани, поэтому он представляет собой гистогенез крови. Постэмбриональный гемоцитопоэз – это процесс физиологической регенерации крови.Эмбриональный период гемоцитопоэза осуществляется в эмбриогенезе поэтапно, сменяя разные органы кроветворения. Этапы перекрывают друг друга, обеспечивая тем самым непрерывность процесса. В соответствии с этим эмбриональный гемоцитопоэз подразделяется на три этапа: 1) желточный, 2) гепатотимоли-енальный, 3) медуллярный (медуллолимфоидный).Желточное кроветворение начинается со 2—3-й недели эмбриогенеза: в мезенхиме желточного мешка в результате пролиферации мезенхимных клеток образуются «кровяные островки». Периферические клетки островков уплощаются (эндотелий сосуда), центральные клетки округляются и превращаются в стволовые клетки крови.Интраваскулярно (в сосудах) образуются первичные эритробласты, первичные эритроциты (мегалобласты, мегалоциты). Экстраваскулярно из части стволовых клеток начинают развиваться в небольшом количестве зернистые лейкоциты.В конце 3-й недели желточная сосудистая сеть соединяется с эмбриональной (в тельце зародыша), устанавливается желточный круг кровообращения. Кровь и стволовые клетки крови поступают в сосуды зародыша, стволовые клетки заселяют закладки будущих кроветворных органов. К 12-й неделе желточное кроветворение прекращается.Гепатотимолиенальный этап характеризуется следующим:– определенной органной локализацией;– возросшими количественными и качественными параметрами крови (появляется гранулоцитопоэз, тромбоцитопоэз, моноцитопоэз и лимфоцитопоэз);– экстраваскулярным характером;– переходом на нормобластический тип кроветворения.В печени с 5-й недели до конца 5-го месяца происходит в основном экстраваскулярное миелоидное кроветворение, которое постепенно снижается и к рождению полностью прекращается. С 7-й недели в печени впервые появляются NK-клетки, которые в крови обнаруживаются только с 27—28-й недели.Тимус очень быстро (9—12 нед) из универсального кроветворного органа становится лимфоидным, в нем начинается Т-лимфоцитопоэз, который продолжается и после рождения до его инволюции (25–30 лет).Селезенка с 7—8-й недели заселяется стволовыми клетками, в ней начинается универсальное экстраваскулярное кроветворение (миело– и лимфоцитопоэз), особенно активное с 5-го по 7-й месяц. С 7-го месяца миелопоэз угнетается и к рождению прекращается. Лимфоидное кроветворение локализуется вокруг артериальных сосудов органа, нарастает и продолжается в постнатальном периоде.Медуллярный этап. Источником стволовых клеток крови со 2—3-го месяца становится красный костный мозг. Закладка красного костного мозга появляется на 2-м месяце эмбриогенеза, кроветворение в нем начинается с 3-го месяца, а с 6—10-го месяца он становится основным органом миелоидного и частично лимфоидного кроветворения, т. е. универсальным кроветворным органом. В тимусе, лимфатических узлах, селезенке в этот период осуществляется лимфоидное кроветворение. В результате последовательной смены органов кроветворения и совершенствования процесса кроветворения формируется кровь как ткань.Постэмбриональный период гемоцитопоэза осуществляется в красном костном мозге и лимфоидных органах (тимус, лимфоидные органы, лимфатические узлы, селезенка).Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.Общепринятой является унипотентная теория кроветворения [Максимов А. А., 1909], согласно которой все форменные элементы крови развиваются из единого предшественника – стволовой клетки.Кроветворение в постнатальном периоде онтогенеза представлено прежде всего двумя видами кроветворения: миелоидным и лимфоидным. Каждый вид кроветворения подразделяется на разновидности или ряды кроветворения (диффероны).Миелопоэз: а) эритроцитопоэз, или эритроцитарный ряд; б) гранулоцитопоэз, или гранулоцитарный ряд; в) моноцитопоэз, или моноцитарный ряд; г) тромбоцитопоэз, или тромбоцитарный ряд.Лимфоцитопоэз: а) Т-лимфоцитопоэз, или Т-лимфоцитарный ряд; б) В-лимфоцитопоэз, или плазмоцитопоэз.В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают классов клеток: I – стволовые кроветворные клетки (СКК); II – полустволовые; III – унипотентные; IV – бластные; V – созревающие; VI – зрелые форменные элементы.Морфологическая и функциональная характеристика клеток различных классов схемы кроветворенияКласс I – стволовая тотипотентная (плюрипотентная, полипотентная) клетка, способная к поддержанию своей популяции. По морфологии соответствует малому лимфоциту:– обладает способностью к самоподдержанию своей популяции без притока клеток извне;– редко делится. Деление СКК стимулируется фактором стволовых клеток, вырабатываемым стромальными клетками костного мозга;– способна образовывать все виды форменных элементов крови;– устойчива к действию повреждающих факторов;– располагается в хорошо защищенных от внешних воздействий и обладающих обильным кровоснабжением местах (ячейки костной ткани);– циркулирует в крови, мигрируя в другие органы кроветворения.Направление дифференцировки стволовой клетки определяется содержанием в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток, индуктивным влиянием стромальных (ретикулярных) клеток красного костного мозга или другого кроветворного органа, вырабатывающего гемопоэтические факторы роста (гемопоэтины).Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и остается стволовой.Делятся стволовые клетки редко (их интерфаза составляет 1–2 года): 80 % стволовых клеток находятся в состоянии покоя и только 20 % – в митозе и последующей дифференцировке.В процессе пролиферации в культуре костного мозга или селезенке каждая стволовая клетка образует группу, или клон, клеток, поэтому стволовые клетки в литературе нередко называют колониеобразующими единицами – КОЕ-С.Класс II – полустволовые, ограниченно полипотентные или мультипотентные (частично коммитированные) клетки – предшественницы: а) миелопоэза – КОЕ-ГЭММ; б) лимфоцитопоэза – КОЕ-Л, или Лск; в) NK-цитопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся чаще (через 3–4 нед) и также поддерживают численность своей популяции.Класс III – олигопотентные (КОЕ-ГМ) и унипотентные (прогениторные) поэтинчувствительные клетки – предшественницы своего ряда кроветворения: КОЕ-М, КОЕ-Гн, КОЕ-Эо, КОЕ-Б, КОЕ-Мег и КОЕ-Э. Морфология их также соответствует морфологии малого лимфоцита. Способны дифференцироваться только в один тип форменного элемента.Делятся часто, но одни потомки этих клеток вступают на путь дифференцировки, а другие сохраняют численность популяции клеток данного класса.Частота деления этих клеток и способность дифференцироваться дальше зависят от содержания в крови особых биологически активных веществ – поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбоцитопоэтины и др.).Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.Класс IV – бластные (молодые) клетки, или бласты (эритробласты, лимфобласты и т. д.). Отличаются по морфологии как от трех предшествующих, так и от последующих классов клеток.Эти клетки крупные, имеют большое рыхлое богатое эухроматином ядро с 2–4 ядрышками, цитоплазма базофильная за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.Класс V – класс созревающих (дифференцирующихся) клеток, характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток – от одной (пролимфоцит, промоноцит) до пяти – в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве (см. лейкоцитарную формулу гранулоцитов) могут попадать в кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).Класс VI – зрелые форменные элементы крови. Следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными форменными элементами или их фрагментами.Моноциты – не окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в тканях в конечные клетки – макрофаги. Лимфоциты при встрече с антигенами превращаются в бласты и снова делятся.Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образует его дифферон, или гистогенетический ряд. Например, эритроцитарный дифферон (эритрон) составляют: I класс – стволовая клетка (СК); II класс – полустволовая клетка (ПСК) – предшественница миелопоэза; III класс – унипотентная эритропоэтин-чувствительная клетка – КОЕ-Э, сюда же относят бурстобразующую единицу – БОЕ-Э, способную быстро (взрывоподобно) образовывать колонию эритроидных клеток численностью в несколько сотен элементов; IV класс – проэритробласт; V класс – созревающие клетки: базофильный, полихроматофильный, оксифильный нормоцит; VI класс – эритроцит.В процессе созревания эритроцитов в V классе происходят: а) синтез и накопление гемоглобина, б) редукция органелл, в) редукция ядра.В норме пополнение эритроцитов происходит в основном за счет деления и дифференцировки созревающих клеток – пронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения носит название гомопластического кроветворения. Клеточные элементы, составляющие диффероны других форменных элементов крови, каждый студент должен уметь перечислить по схеме кроветворения.5.2.1. ГранулоцитопоэзГранулоциты существуют трех типов, каждый из которых происходит от собственной унипотентной стволовой клетки, производной КОЕ-ГЭММ (колониеобразующей единицы гранулоцитов, эритроцитов, моноцитов и мегакариоцитов), образующей гистологически определенный миелобласт.Образование нейтрофилов: I класс (СК) II класс (ПСК)III класс (унипотентная лейкопоэтинчувствительная клетка – КОЕ-Гн) IV класс (нейтрофильный миелобласт) V класс (нейтрофильный промиелоцит, нейтрофильный миелоцит, нейтрофильный метамиелоцит, палочкоядерный нейтрофил)VI класс (зрелый нейтрофил)Нейтрофильный миелобласт (IV класс) диаметром от 12 до 14 мкм, его крупное округлое красновато-синее ядро имеет тонкую сеть хроматина, присутствуют два или три бледно-серых ядрышка, цитоплазма не имеет гранул;– на периферии клетки часто имеются цитоплазматические выпячивания, похожие на псевдоподии (определяются на электронных микрофотографиях)– в цитоплазме присутствуют гранулярная эндоплазматическая сеть, небольшой комплекс Гольджи, множество митохондрий и свободных рибосом.Нейтрофильный промиелоцит (V класс) крупнее миелобласта (диаметр 16–24 мкм). Ядро имеет грубую сеть хроматина и 1–2 ядрышка;– цитоплазма голубоватого оттенка, содержит множество азурофильных гранул (неспецифических), периферия клетки больше не имеет похожих на псевдоподии цитоплазматических выпячиваний. На электронных микрофотографиях видны хорошо развитый комплекс Гольджи, гранулярная эндоплазматическая сеть и множество митохондрий;– азурофильные гранулы диаметром примерно 0,5 мкм, формируются на поверхности созревающего комплекса Гольджи. Это лизосомы, содержащие гидролитические ферменты и пероксидазу.Нейтрофильный миелоцит диаметром 10–12 мкм; имеет немного уплощенное ацентричное ядро с грубой сетью хроматина. Ядрышки могут быть, а могут отсутствовать;– специфические гранулы диаметром 0,1 мкм, содержат лизоцим, щелочную фосфатазу, коллагеназу и фагоцитин, ясно видны, как и азурофильные гранулы– комплекс Гольджи хорошо развит, выглядит как прозрачный чистый участок в бледно-голубой цитоплазме;– на поверхности формирования комплекса Гольджи образуются специфические нейтрофильные гранулы;– все еще происходит клеточное деление. Это единственная стадия, на которой формируются специфические нейтрофильные гранулы.Нейтрофильный метамиелоцит похож на нейтрофильный миелоцит, за исключением того, что ядро бобовидное и грубая сеть хроматина не имеет ядрышек (рис. 5.3);– гетерохроматин указывает на уменьшение синтеза белка, что отражается в редукции органелл в клетке.Палочкоядерный нейтрофил похож на зрелый нейтрофил, за исключением подковообразного ядра. Палочкоядерные клетки часто находят в циркулирующей крови, а в случаях инфицирования организма их число резко увеличивается.

Количество нейтрофилов, продуцируемый: в организме здорового взрослого человека, около 800 000 в день.Образование эозинофилов и базофилов: стадии развития эозинофилов и базофилов похожи на стадии, описанные для нейтрофилов, за исключением того, что типы гранул, формирующихся на стадии миелоцита, специфичны для каждого типа клеток. Кроме того, морфология ядра зрелой клетки напоминает таковую на поздней стадии палочкоядерного гранулоцита.Моноцитопоэз: I класс (СК) → II класс (ПСК) → III класс (унипотентная клетка – КОЕ-М) – общая предшественница моноцитов и нейтрофилов (дает начало монобластам) → IV класс (монобласты) → V класс (промоноцит) → VI класс (моноцит).Промоноцит – крупная клетка (диаметр 16–18 мкм) с несколько бобовидным ядром, расположенным эксцентрично в светло-голубой цитоплазме, которая содержит также множество азурофильных гранул (лизосом), продуцируемых хорошо развитым комплексом Гольджи, многочисленные митохондрии и довольно развитую гранулярную эндоплазматическую сеть.

Деление промоноцитов приводит к формированию моноцитов (VI класс), которые покидают костный мозг, поступают в кровоток, а затем после проникновения в соединительную ткань периферических органов дифференцируются в макрофаги, а также в дендритные антигенпредставляющие клетки.Количество моноцитов, образующихся ежедневно в организме здорового взрослого человека, составляет около 1 1010.Образование кровяных пластинок (тромбоцитопоэз): I класс (СК) → II класс (ПСК) → III класс (унипотентная тромбопоэтинчувствительная клетка – КОЕ-мег) → IV класс (мегакариобласт) → V класс (промегакариоцит) → VI класс (тромбоцитах).Мегакариобласт – крупная клетка (диаметр 25–40 мкм), единственное крупное ядро с выемками (либо дольчатое) имеет тонкую сеть хроматина. Деление мегакариобласта происходит путем эндомитоза, в его ходе не образуется дочерних клеток. Вместо этого клетка приобретает гигантские размеры, плоидность ядра может достигать 64 (см. рис. 5.2);– цитоплазма слабобазофильная, без гранул, на электронных микрофотографиях видны крупные митохондрии, многочисленные полисомы, некоторое количество гранулярной эндоплазматической сети и довольно хорошо развитый комплекс Гольджи.Промегакариоцит – крупная округлая клетка диаметром 42–45 мкм с объемным дольчатым полиплоидным ядром и резко базофильной цитоплазмой;– помимо обычных органелл, цитоплазма содержит сложную систему гладких пузырьков, тубул, плоских цистерн, которые, сливаясь, формируют тромбоцитарные демаркационные каналы;– в процессе дальнейшей дифференцировки промегакариоциты становятся либо резервными, либо тромбоцитпродуцирующими мегакариоцитами.Мегакариоцит – необычайно крупная клетка (диаметр 40– 100 мкм) с одним многодольчатым крупным полиплоидным ядром. На электронных микрофотографиях видны хорошо развитый комплекс Гольджи, активно формирующий α-гранулы, лизосомы и плотные тельца, многочисленные митохондрии и довольно развитая гранулярная эндоплазматическая сеть.Мегакариоциты расположены в окружности синусоидов, в поры стенки которых проникают их отростки. Отростки распадаются вдоль определенных демаркационных каналов, формируя группы соединенных кровяных пластинок, которые затем разделяются на отдельные тромбоциты.После полного отделения тромбоцитов остаточные мегакариоциты подвергаются дегенерации, фагоцитируются и замещаются новыми.

5.2.2. ЛимфоцитопоэзКлетка-предшественница лимфоцитов берет начало от популяции СК (тотипотентные гемопоэтические стволовые клетки), находится в костном мозге, как и в циркулирующей крови, как член популяции «нулевых» клеток.Это иммунокомпетентные клетки, дающие начало по меньшей мере двум популяциям СК: клеткам-предшественницам Т-лимфоцитов и клеткам-предшественницам В-лимфоцитов и, наверное, клеткам-предшественницам NK-клеток (естественные киллеры).В Т– и В-лимфоцитопоэзе выделяют три этапа: I – костно-мозговой этап; II – антигеннезависимой дифференцировки (в центральных иммунных органах); III – антигензависимой дифференцировки (в периферических органах иммунной защиты).Т-лимфоцитопоэз. Этап I протекает в лимфоидной ткани красного костного мозга: I класс (СК) II класс (ПСК) – клетки-предшественницы лимфопоэза – КОЕ-Л, или Лск, III класс (унипотентные Т-поэтинчувствительные клетки – клетки-предшественницы Т-лимфоцитопоэза). Эти клетки с током крови достигают тимуса./Этап II осуществляется в корковом веществе тимуса под влиянием тимозина: унипотентные клетки-предшественницы (III класс) превращаются в Т-лимфобласты (IV класс), затем в Т-пролимфоциты (V класс) и в Т-лимфоциты (VI класс). В тимусе развиваются самостоятельно три субпопуляции Т-лимфоцитов: киллеры, хелперы, супрессоры, приобретающие разные рецепторы к разнообразным антигенам. Они током крови заносятся в периферические лимфоидные органы.Этап III протекает в Т-зонах периферических лимфоидных органов. Под влиянием соответствующего антигена Т-лимфоцит превращается в Т-лимфобласт, вернее Т-иммунобласт (реакция бласттрансформации). Затем эти клетки пролиферируют и образуют клоны клеток: Т-клетки памяти, Т-киллеры, Т-хелперы и т. д., т. е. эффекторные клетки, обеспечивающие клеточный иммунитет. При повторной встрече с антигеном Т-лимфоциты памяти всех субпопуляций обеспечивают более быстрый и сильный вторичный иммунный ответ.В-лимфоцитопоэз и плазмоцитопоэз. Этап I осуществляется в красном костном мозге, где образуются следующие классы клеток: I (СК) → II (ПСК) – предшественницы лимфопоэза → III класс – унипотентные В-лимфопоэтинчувствительные клетки – предшественницы В-лимфоцитопоэза.Этап II – антигеннезависимой дифференцировки – у птиц осуществляется в специальном центральном лимфоидном органе – фабрициевой сумке. Его аналог у человека точно не установлен. Большинство исследователей считают, что II этап также происходит в красном костном мозге: из унипотентных В-клеток-предшественниц образуются В-лимфобласты (IV класс), В-пролимфоциты (V класс) и В-лимфоциты рецепторные (VI класс). В-лимфоциты приобретают на этом этапе разнообразные рецепторы к антигенам – иммуноглобулины, которые синтезируются в самих созревающих В-лимфоцитах.Этап III – антигензависимой дифференцировки – происходит в В-зонах периферических лимфоидных органов, где происходят встреча антигена с соответствующим В-рецепторным лимфоцитом, активация и трансформация последнего в иммунобласт – плазмобласт, а затем образуется клон клеток, среди которых различают:– В-лимфоциты памяти;– плазмоциты, которые являются эффекторными клетками гуморального иммунитета. Они синтезируют и выделяют в кровь или лимфу иммуноглобулины (антитела) разных классов, которые образуют комплексы антиген – антитело, нейтрализуя антигены. Иммунные комплексы затем фагоцитируются нейтрофилами и макрофагами.Для реакции бласттрансформации В-лимфоцита необходима кооперация В-рецепторного лимфоцита, макрофага, Т-хелпера (Т-супрессора), а также гуморального антигена.Развитие NK-клеток происходит независимо от образования Т– и В-лимфоцитов из костно-мозгового предшественника;– после выхода в кровь NK-клетки циркулируют в ней или мигрируют в селезенку;– дозревание NK-клеток происходит в тканях под влиянием малоизученных факторов микроокружения.

29.ОБЩАЯ ФИЗИОЛОГИЯ ЖЕЛЕЗ ВНУТРЕННЕЙ СЕКРЕЦИИВысшей формой гуморальной регуляции является гормональная. Термин "гормон" был впервые применен в 1902 г. Старлингом и Бейлиссом в отношении открытого ими вещества, продуцирующегося в двенадцатиперстной кишке, - секретина. Термин "гормон" в переводе с греческого означает "побуждающий к действию", хотя не все гормоны обладают стимулирующим эффектом. Гормоны - это биологически высокоактивные вещества, синтезирующиеся и выделяющиеся во внутреннюю среду организма эндокринными железами, или железами внутренней секреции, и оказывающие регулирующее влияние на функции удаленных от места их секреции органов и систем организма. Эндокринная железа - это анатомическое образование, лишенное выводных протоков, единственной или основной функцией которого является внутренняя секреция гормонов. К эндокринным железам относятся гипофиз, эпифиз, щитовидная железа, надпочечники (мозговое и корковое вещество), паращитовидные железы. В отличие от внутренней секреции, внешняя секреция осуществляется экзокринными железами через выводные протоки во внешнюю среду. В некоторых органах одновременно присутствуют оба типа секреции. Инкреторная функция осуществляется эндокринной тканью, т.е. скоплением клеток с инкреторной функцией в органе, обладающем функциями, не связанными с продукцией гормонов. К органам со смешанным типом секреции относятся поджелудочная железа и половые железы. Одна и та же железа внутренней секреции может продуцировать неодинаковые по своему действию гормоны. Так, например, щитовидная железа продуцирует тироксин и тирокальцитонин. В то же время продукция одних и тех же гормонов может осуществляться разными эндокринными железами. Например, половые гормоны продуцируются и половыми железами, и надпочечниками. Продукция биологически активных веществ - это функция не только желез внутренней секреции, но и других традиционно неэндокринных органов: почек, желудочно-кишечного тракта, сердца. Не все вещества, образующиеся специфическими клетками этих органов, удовлетворяют классическим критериям понятия "гормоны". Поэтому наряду с термином "гормон" в последнее время используются также понятия гормоноподобные и биологически активные вещества (БАВ), гормоны местного действия. Так, например, некоторые из них синтезируются так близко к своим органам-мишеням, что могут достигать их диффузией, не попадая в кровоток. Клетки, вырабатывающие такие вещества, называют паракринными. Трудность точного определения термина "гормон" особенно хорошо видна на примере катехоламинов - адреналина и норадреналина. Когда рассматривается их выработка в мозговом веществе надпочечников, их обычно называют гормонами, если речь идет об их образовании и выделении симпатическими окончаниями, их называют медиаторами. Регуляторные гипоталамические гормоны - группа нейропептидов, включая недавно открытые энкефалины и эндорфины, действуют не только как гормоны, но и выполняют своеобразную медиаторную функцию. Некоторые из регуляторных гипоталамических пептидов обнаружены не только в нейронах головного мозга, но и в особых клетках других органов, например кишечника: это вещество Р, нейротензин, соматостатин, холецистокинин и др. Клетки, вырабатывающие эти пептиды, образуют согласно современным представлениям диффузную нейроэндокринную систему, состоящую из разбросанных по разным органам и тканям клеток. Клетки этой системы характеризуются высоким содержанием аминов, способностью к захвату предшественников аминов и наличием декарбоксилазы аминов. Отсюда название системы по первым буквам английских слов Amine Precursors Uptake and Decarboxylating system - APUD-система - система захвата предшественников аминов и их декарбоксилирования. Поэтому правомерно говорить не только об эндокринных железах, но и об эндокринной системе, которая объединяет все железы, ткани и клетки организма, выделяющие во внутреннюю среду специфические регуляторные вещества. Химическая природа гормонов и биологически активных веществ различна. От сложности строения гормона зависит продолжительность его биологического действия, например, от долей секунды у медиаторов и пептидов до часов и суток у стероидных гормонов и йодтиронинов. Анализ химической структуры и физико-химических свойств гормонов помогает понять механизмы их действия, разрабатывать методы их определения в биологических жидкостях и осуществлять их синтез. Классификация гормонов и БАБ по химической структуре: Производные аминокислот: производные тирозина: тироксин, трийодтиронин, дофамин, адреналин, норадреналин; производные триптофана: мелатонин, серотонин; производные гистидина: гистамин. Белково-пептидные гормоны: полипептиды: глюкагон, кортикотропин, меланотропин, вазо-прессин, окситоцин, пептидные гормоны желудка и кишечника; простые белки (протеины): инсулин, соматотропин, пролактин, паратгормон, кальцитонин; сложные белки (гликопротеиды): тиреотропин, фоллитропин, лютропин. Стероидные гормоны: кортикостероиды (альдостерон, кортизол, кортикостерон); половые гормоны: андрогены (тестостерон), эстрогены и прогестерон.

Производные жирных кислот: арахидоновая кислота и ее производные: простагландины, простациклины, тромбоксаны, лейкотриены. Несмотря на то, что гормоны имеют разное химическое строение, для них характерны некоторые общие биологические свойства. Общие свойства гормонов: Строгая специфичность (тропность) физиологического действия. Высокая биологическая активность: гормоны оказывают свое физиологическое действие в чрезвычайно малых дозах. Дистантный характер действия: клетки-мишени располагаются обычно далеко от места образования гормона. Многие гормоны (стероидные и производные аминокислот) не имеют видовой специфичности. Генерализованность действия. Пролонгированность действия.Установлены четыре основных типа физиологического действия на организм: кинетическое, или пусковое, вызывающее определенную деятельность исполнительных органов; метаболическое (изменения обмена веществ); морфогенетическое (дифференциация тканей и органов, действие на рост, стимуляция формообразовательного процесса); корригирующее (изменение интенсивности функций органов и тканей). Гормональный эффект опосредован следующими основными этапами: синтезом и поступлением в кровь, формами транспорта, клеточными механизмами действия гормонов. От места секреции гормоны доставляются к органам-мишеням циркулирующими жидкостями: кровью, лимфой. В крови гормоны циркулируют в нескольких формах: 1) в свободном состоянии; 2) в комплексе со специфическими белками плазмы крови; 3) в форме неспецифического комплекса с плазменными белками; 4) в адсорбированном состоянии на форменных элементах крови. В состоянии покоя 80% приходится на комплекс со специфическими белками. Биологическая активность определяется содержанием свободных форм гормонов. Связанные формы гормонов являются как бы депо, физиологическим резервом, из которого гормоны переходят в активную свободную форму по мере необходимости. Обязательным условием для проявления эффектов гормона является его взаимодействие с рецепторами. Гормональные рецепторы представляют собой особые белки клетки, для которых характерны: 1) высокое сродство к гормону; 2) высокая избирательность; 3) ограниченная связывающая емкость; 4) специфичность локализации рецепторов в тканях. На одной и той же мембране клетки могут располагаться десятки разных типов рецепторов. Количество функционально активных рецепторов может изменяться при различных состояниях и в патологии. Так, например при беременности в миометрии исчезают М-холинорецепторы, и возрастает количество окситоциновых рецепторов. При некоторых формах сахарного диабета имеет место функциональная недостаточность инсулярного аппарата, т.е. уровень инсулина в крови высокий, но часть инсулиновых рецепторов оккупирована аутоантителами к этим рецепторам. В 50% случаев рецепторы локализуются на мембранах клетки-мишени; 50% - внутри клетки. Механизмы действия гормонов. Существуют два основных механизма действия гормонов на уровне клетки: реализация эффекта с наружной поверхности клеточной мембраны и реализация эффекта после проникновения гормона внутрь клетки. В первом случае рецепторы расположены на мембране клетки. В результате взаимодействия гормона с рецептором активируется мембранный фермент - аденилатциклаза. Этот фермент способствует образованию из аденозинтрифосфорной кислоты (АТФ) важнейшего внутриклеточного посредника реализации гормональных эффектов - циклического 3,5-аденозинмонофос-фата (цАМФ). цАМФ активирует клеточный фермент протеинкиназу, реализующую действие гормона. Установлено, что гормонозависимая аденилатциклаза - это общий фермент, на который действуют различные гормоны, в то время как рецепторы гормонов множественны и специфичны для каждого гормона. Вторичными посредниками кроме цАМФ могут быть циклический 3,5-гуанозинмонофосфат (цГМФ), ионы кальция, инозитол-трифосфат. Так действуют пептидные, белковые гормоны, производные тирозина - катехоламины. Характерной особенностью действия этих гормонов является относительная быстрота возникновения ответной реакции, что обусловлено активацией предшествующих уже синтезированных ферментов и других белков. Во втором случае рецепторы для гормона находятся в цитоплазме клетки. Гормоны этого механизма действия в силу своей липофильности легко проникают через мембрану внутрь клетки-мишени и связываются в ее цитоплазме специфическими белками-рецепторами. Гормон-рецепторный комплекс входит в клеточное ядро. В ядре комплекс распадается, и гормон взаимодействует с определенными участками ядерной ДНК, следствием чего является образование особой матричной РНК. Матричная РНК выходит из ядра и способствует синтезу на рибосомах белка или белка-фермента. Так действуют стероидные гормоны и производные тирозина - гормоны щитовидной железы. Для их действия характерна глубокая и длительная перестройка клеточного метаболизма.

Инактивация гормонов происходит в эффекторных органах, в основном в печени, где гормоны претерпевают различные химические изменения путем связывания с глюкуроновой или серной кислотолибо в результате воздействия ферментов. Частично гормоны выделяются с мочой в неизмененном виде. Действие некоторых гормонов может блокироваться благодаря секреции гормонов, обладающих антагонистическим эффектом. Гормоны выполняют в организме следующие важные функции: Регуляция роста, развития и дифференцировки тканей и органов, что определяет физическое, половое и умственное развитие. Обеспечение адаптации организма к меняющимся условиям существования. Обеспечение поддержания гомеостаза. Функциональная классификация гормонов: Эффекторные гормоны - гормоны, которые оказывают влияние непосредственно на орган-мишень. Тройные гормоны - гормоны, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов. Выделяются аденогипофизом. Рилизинг-гормоны - гормоны, регулирующие синтез и выделение гормонов аденогипофиза, преимущественно тройных. Выделяются нервными клетками гипоталамуса. Виды взаимодействия гормонов. Каждый гормон не работает в одиночку. Поэтому необходимо учитывать возможные результаты их взаимодействия. Синергизм - однонаправленное действие двух или нескольких гормонов. Например, адреналин и глюкагон активируют распад гликогена печени до глюкозы и вызывают увеличение уровня сахара в крови. Антагонизм всегда относителен. Например, инсулин и адреналин оказывают противоположные действия на уровень глюкозы в крови. Инсулин вызывает гипогликемию, адреналин - гипергликемию. Биологическое же значение этих эффектов сводится к одному - улучшению углеводного питания тканей. Пермиссивное действие гормонов заключается в том, что гормон, сам не вызывая физиологического эффекта, создает условия для ответной реакции клетки или органа на действие другого гормона. Например, глюкокортикоиды, не влияя на тонус мускулатуры сосудов и распад гликогена печени, создают условия, при которых даже небольшие концентрации адреналина увеличивают артериальное давление и вызывают гипергликемию в результате гликогенолиза в печени. Регуляция функций желез внутренней секрецииРегуляция деятельности желез внутренней секреции осуществляется нервными и гуморальными факторами. Нейроэндокринные зоны гипоталамуса, эпифиз, мозговое вещество надпочечников и другие участки хромаффинной ткани регулируются непосредственно нервными механизмами. В большинстве случаев нервные волокна, подходящие к железам внутренней секреции, регулируют не секреторные клетки, а тонус кровеносных сосудов, от которых зависит кровоснабжение и функциональная активность желез. Основную роль в физиологических механизмах регуляции играют нейрогормональные и гормональные механизмы, а также прямые влияния на эндокринные железы тех веществ, концентрацию которых регулирует данный гормон. Регулирующее влияние ЦНС на деятельность эндокринных желез осуществляется через гипоталамус. Гипоталамус получает по афферентным путям мозга сигналы из внешней и внутренней среды. Нейросекреторные клетки гипоталамуса трансформируют афферентные нервные стимулы в гуморальные факторы, продуцируя рилизинг-гормоны. Рилизинг-гормоны избирательно регулируют функции клеток аденогипофиза. Среди рилизинг-гормонов различают либерины - стимуляторы синтеза и выделения гормонов аденогипофиза и статины - ингибиторы секреции. Они носят название соответствующих тропных гормонов: тиреолиберин, кортиколиберин, соматолиберин и т.д. В свою очередь, тропные гормоны аденогипофиза регулируют активность ряда других периферических желез внутренней секреции (кора надпочечников, щитовидная железа, гонады). Это так называемые прямые нисходящие регулирующие связи. Кроме них внутри указанных систем существуют и обратные восходящие саморегулирующие связи. Обратные связи могут исходить как от периферической железы, так и от гипофиза. По направленности физиологического действия обратные связи могут быть отрицательными и положительными. Отрицательные связи самоограничивают работу системы. Положительные связи самозапускают ее. Так, низкие концентрации тироксина через кровь усиливают выработку тиреотропного гормона гипофизом и тиреолиберина - гипоталамусом. Гипоталамус значительно более чувствителен, чем гипофиз к гормональным сигналам, поступающим от периферических эндокринных желез. Благодаря механизму обратной связи устанавливается равновесие в синтезе гормонов, реагирующее на снижение или повышение концентрации гормонов желез внутренней секреции. Некоторые железы внутренней секреции, такие как поджелудочная железа, околощитовидные железы, не находятся под влиянием гормонов гипофиза. Деятельность этих желез зависит от концентрации тех веществ, уровень которых регулируется этими гормонами. Так, уровень паратгормона околощитовидных желез и кальцитонина щитовидной железы определяется концентрацией ионов кальция в крови. Глюкоза регулирует продукцию инсулина и глюкагона поджелудочной железой. Кроме того, функционирование этих желез осуществляется за счет влияния уровня гормонов-антагонистов.

Возрастные особенности структуры и функции эндокринных желез. Часть 1. Возрастные особенности структуры и функции эндокринных желез. Часть 1.Возрастные особенности гипофиза.Гипофиз имеет эктодермальное происхождение. Аденогипофиз (вместе с промежуточной долей) формируется из эпителия ротовой полости, а нейрогипофиз - из промежуточного мозга.У детей между передней и промежуточной долями имеется щель. У взрослых эта щель зарастает и обе доли тесно прилегают друг к другу.Масса гипофиза новорожденных составляет 100-150 мг. На втором году жизни начинается его увеличение, которое оказывается особенно резким в 4-5 лет, после чего до 11 лет наступает период замедленного роста гипофиза. С 11 лет вновь скорость его роста увеличивается. К периоду полового созревания масса гипофиза в среднем составляет 200-350 мг, а к 18-20 годам - 500-650 мг.Ацидофильные клетки гипофиза появляются на 13-15-й неделе внутриутробного развития. После рождения ребенка число их растет до 20 лет, с 20 до 50 лет остается без изменения, а затем уменьшается. Функция ацидофильных клеток начинается уже в период внутриутробного развития: ее отмечали у плодов длиной 50 мм. Количество соматотропного гормона, выделяемого этими клетками, у детей до 3-5 лет большое, чем у взрослых. С 3-5 лет устанавливается норма выделения соматотропного гормона, характерная для взрослого.Количество выделяемого соматотропного гормона (СТГ) находится в соответствии с созреванием соответствующих клеток гипоталамуса. Показано, что с возрастом уменьшается количество релизинг-факторов, вызывающих выделение соматотропного гормона гипофиза. Чувствительность различных тканей к действию СТГ с возрастом увеличивается. Это проявляется в увеличении интенсивности клеточного деления, синтеза белка и РНК под влиянием СТГ.СТГ в большинстве случаев выделяется в течение всей жизни. Прекращение роста, несмотря на наличие СТГ, зависит от увеличения в период полового созревания количества эстрогенов, которые уменьшают его активность.Следы адренокортикотропного гормона (АКТГ) впервые обнаруживаются в гипофизе на 9-10-й неделе внутриутробного периода. В гипофизе новорожденных отмечается такое же количество АКТГ, как и в гипофизе взрослых. Вместе с тем комплекс адаптационных реакций, которые развиваются при действии стресс-факторов, у новорожденных либо совсем отсутствует, либо выражен в очень слабой степени. Это связано с возрастными особенностями функций гипоталамических структур. Их чувствительность к импульсам, несущим информацию об изменениях, которые происходят во внутренней и внешней среде организма, увеличивается с возрастом. Соответственно, усиливается влияние ядер гипоталамуса на функцию аденогипофиза, что в условиях стресса сопровождается увеличением секреции АКТГ. В старости чувствительность ядер гипоталамуса к информации, приходящий по нервным путям, вновь падает, с чем связана меньшая выраженность в пожилом возрасте адаптационного синдрома. Снижение чувствительности гипоталамических ядер связывают с уменьшением числа их нейросекреторных клеток.Тиреотропный гормон (ТТГ) гипофиза также начинает выделяться еще во внутриутробный период развития. Однако, соответственно малому числу базофильных клеток, количество его невелико. На первом году жизни увеличивается число базофильных клеток гипофиза и вместе с тем растет количество выделяемого ТТГ. Наиболее резкое увеличение выделения ТТГ отмечается сразу после рождения и перед началом периода полового созревания. В последующие годы вплоть до конца периода полового созревания продолжается увеличение его секреции, максимум которой достигается в возрасте от 21 до 30 лет. В возрасте 51-85 лет величина ее становится в два раза меньшей, чем в 21-30 лет. Антидиуретический гормон гипофиза начинает выделяться на четвертом месяце эмбрионального развития, максимум его выделения отмечается к одному году после рождения, затем антидиуретическая активность нейрогипофиза начинает падать до довольно низких величин и в возрасте 55 лет она примерно в 2 раза меньше, чем в возрасте 1 года.Для клеток, связанных с секрецией гонадотропных гормонов, характерна цикличность их функции. Так, наибольшая интенсивность секреции отмечается в 4-4,5 месяца эмбрионального развития, у детей - в период полового созревания и у взрослых - в период угасания половой функции, когда уменьшается количество эстрогенов и, соответственно, снимается их тормозящее действие на подбугровую область.

4.8. Эндокринные железы. Их взаимосвязь и функции Железы внутренней секреции (эндокринные) не имеют выводных протоков и выделяют секрет непосредственно во внутреннюю среду – кровь, лимфу, тканевую и спинно-мозговую жидкость. Эта особенность отличает их от желез внешней секреции (пищеварительных) и экскреторных желез (почек и потовых), выделяющих образуемые ими продукты во внешнюю среду.Гормоны. Эндокринные железы продуцируют различные химические вещества – так называемые гормоны. Гормоны действуют на обмен веществ в ничтожно малых количествах, они служат катализаторами, осуществляя свое воздействие через кровь и нервную систему. Гормоны оказывают огромное влияние на умственное и физическое развитие, рост, изменение строения организма и его функции, определяют половые различия.Гормоны характеризуются специфичностью действия: оказывают избирательное действие только на определенную функцию (или функции). Влияние гормонов на обмен веществ осуществляется в основном через изменения активности определенных ферментов, причем гормоны влияют либо непосредственно на их синтез, либо на синтез других веществ, участвующих в конкретном ферментативном процессе. Действие гормона зависит от дозы и может тормозиться разными соединениями (иногда их называют антигормонами).Установлено, что гормоны активно влияют на формирование организма уже на ранних стадиях внутриутробного развития. Например, у зародыша функционируют щитовидная, половые железы и гонадотропные гормоны гипофиза. Существуют возрастные особенности функционирования и строения желез внутренней секреции. Так, некоторые эндокринные железы особенно интенсивно функционируют в детском возрасте, другие – в зрелом.Щитовидная железа. Состоит щитовидная железа из перешейка и двух боковых долей, расположена на шее впереди и по бокам трахеи. Вес щитовидной железы составляет: у новорожденного – 1,5–2,0 г, к 3 годам – 5,0 г, к 5 годам – 5,5 г, к 5–8 годам – 9,5 г, к 11–12 годам (к началу полового созревания) – 10,0-18,0 г, к 13–15 годам – 22–35 г, у взрослого – 25–40 г. К старости вес железы падает, причем у мужчин больше, чем у женщин.Щитовидная железа обильно снабжается кровью: объем проходящей через нее крови у взрослого человека составляет 5–6 куб. дм крови в час. Железа секретирует два гормона – тироксин, или тетрайодтиронин (Т4), и трийодтиронин (Т3). Тироксин синтезируется из аминокислоты тирозина и йода. У взрослого человека в организме содержится 25 мг йода, из них в щитовидной железе – 15 мг. Оба гормона (Т3 и Т4) образуются в щитовидной железе одновременно и непрерывно в результате протеолитического расщепления тиреоглобулина. Т3 синтезируется в 5–7 раз меньше, чем Т4, он содержит меньше йода, но его активность в 10 раз больше активности тироксина. В тканях Т4 превращается в Т3. Выводится Т3 из организма быстрее, чем тироксин.Оба гормона усиливают поглощение кислорода и окислительные процессы, повышают теплообразование, тормозят образование гликогена, увеличивая его расщепление в печени. Действие гормонов на белковый обмен связано с возрастом. У взрослых и у детей тиреоидные гормоны оказывают противоположное действие: у взрослых при избытке гормона увеличивается расщепление белков и наступает исхудание, у детей – увеличивается синтез белка и ускоряются рост и формирование организма. Оба гормона увеличивают синтез и расщепление холестерина с преобладанием расщепления. Искусственное повышение содержания тиреоидных гормонов увеличивает основной обмен и повышает активность протеолитических ферментов. Прекращение их поступления в кровь резко снижает основной обмен. Гормоны щитовидной железы повышают иммунитет.Нарушение функции щитовидной железы приводит к тяжелым заболеваниям и патологиям развития. При гиперфункции щитовидной железы появляются признаки базедовой болезни. В 80 % случаев она развивается после психической травмы; встречается во всех возрастах, но чаще с 20 до 40 лет, причем у женщин в 5-10 раз чаще, чем у мужчин. При гипофункции щитовидной железы наблюдается такое заболевание, как микседема. У детей микседема является результатом врожденного отсутствия щитовидной железы (аплазия) или ее атрофии с гипофункцией или отсутствием секреции (гипоплазия). При микседеме часты случаи олигофрении (вызывается нарушением образования тироксина вследствие задержки превращения аминокислоты фенилаланина в тирозин). Также возможно развитие кретинизма, вызванного разрастанием опорной соединительной ткани железы за счет клеток, образующих секрет. Данное явление зачастую имеет географическую привязанность, поэтому получило название эндемического зоба. Причиной эндемического зоба является недостаток йода в пище, главным образом растительной, а также в питьевой воде.Щитовидная железа иннервируется симпатическими нервными волокнами.Околощитовидные (паращитовидные) железы. У человека четыре околощитовидных железы. Их общий вес составляет 0,13-0,25 г. Они расположены на задней поверхности щитовидной железы, зачастую даже в ее ткани. В околощитовидных железах различают два вида клеток: главные и оксифильные. Оксифильные клетки появляются с 7–8 лет, к 10–12 годам их становится больше. С возрастом наблюдается увеличение количества клеток жировой и опорной ткани, которая к 19–20 годам начинает вытеснять железистые клетки.Паращитовидные железы образуют паратиреоидный гормон (паратиреоидин, паратгормон), являющийся белковым веществом (альбумозой). Гормон выделяется непрерывно и регулирует развитие скелета и отложение кальция в костях. Его регуляторный механизм основан на регуляции функции остеокластов, рассасывающих кости. Активная работа остеокластов приводит к выходу кальция из костей, благодаря этому обеспечивается постоянное содержание кальция в крови на уровне 5-11 мг%. Паратгормон также поддерживает на определенном уровне содержание фермента фосфатазы, участвующего в отложении фосфорно-кислого кальция в костях. Секреция паратиреоидина регулируется содержанием кальция в крови: чем его меньше, тем секреция железы выше.Околощитовидные железы также продуцируют другой гормон – кальцитонин, который снижает содержание кальция в крови, секреция его усиливается при увеличении содержания кальция в крови.Атрофия околощитовидных желез вызывает тетанию (судорожную болезнь), которая возникает в результате значительного повышения возбудимости центральной нервной системы, вызванного уменьшением содержания кальция в крови. При тетании наблюдаются судорожные сокращения мышц гортани, паралич дыхательных мышц и остановка сердца. Хроническая гипофункция околощитовидных желез сопровождается повышенной возбудимостью нервной системы, слабыми судорогами мышц, расстройствами пищеварения, окостенением зубов, выпадением волос. Перевозбуждение нервной системы переходит в торможение. Наблюдаются явления отравления продуктами белкового обмена (гуанидином). При хронической гиперфункции желез уменьшается содержание кальция в костях, они разрушаются и становятся ломкими; нарушаются сердечная деятельность и пищеварение, снижается сила мышечной системы, наступает апатия, а в тяжелых случаях – смерть.Околощитовидные железы иннервируются веточками возвратного и гортанного нервов и симпатическими нервными волокнами.Зобная (вилочковая) железа. Вилочковая железа расположена в грудной полости за грудиной, состоит из правой и левой неодинаковых долей, объединенных соединительной тканью. Каждая долька вилочковой железы состоит из коркового и мозгового слоев, основой которых является ретикулярная соединительная ткань. В корковом слое много лимфоцитов малого размера, в мозговом слое лимфоцитов относительно меньше.С возрастом размеры и строение железы сильно меняются: до 1 года ее масса составляет 13 г; с 1 года до 5 лет -23 г; с 6 до 10 лет – 26 г; с 11 до 15 лет – 37,5 г; с 16 до 20 лет – 25,5 г; с 21 года до 25 лет – 24,75 г; с 26 до 35 лет – 20 г; с 36 до 45 лет – 16 г; с 46 до 55 лет – 12,85 г; с 66 до 75 лет – 6 г. Наибольший абсолютный вес железы у подростков, затем он начинает снижаться. Наибольший относительный вес (на кг веса тела) у новорожденных – 4,2 %, потом начинается его снижение: в 6-10 лет – до 1,2 %, в 11–15 лет – до 0,9 %, в 16–20 лет – до 0,5 %. С возрастом железистая ткань постепенно замещается жировой. Перерождение железы обнаруживается с 9-15 летВилочковая железа по содержанию аскорбиновой кислоты находится на втором месте после надпочечников. Кроме того, в ней много витаминов В2, D и цинкаГормон, вырабатываемый вилочковой железой, неизвестен, но считается, что он регулирует иммунитет (участвует в процессе созревания лимфоцитов), принимает участие в процессе полового созревания (тормозит половое развитие), усиливает рост организма и задерживает соли кальция в костях. После ее удаления резко усиливается развитие половых желез: задержка перерождения вилочковой железы замедляет развитие половых желез, и наоборот, после кастрации в раннем детском возрасте возрастные изменения железы не наступают. Гормоны щитовидной железы вызывают увеличение вилочковой железы у растущего организма, а гормоны надпочечников, наоборот, вызывают ее уменьшение. В случае удаления вилочковой железы надпочечники и щитовидная железа гипертрофируются, а повышение функции зобной железы понижает функцию щитовидной железы.Зобная железа иннервируется симпатическими и парасимпатическими нервными волокнами.Надпочечные железы (надпочечники). Это парные железы, их две. Обе они охватывают верхние концы каждой почки. Средний вес обоих надпочечников – 10–14 г, причем у мужчин они относительно меньше, чем у женщин. Возрастные изменения относительного веса обоих надпочечников выглядят следующим образом: у новорожденных – 6–8 г, у детей 1–5 лет – 5,6 г; 10 лет – 6,5 г; 11–15 лет – 8,5 г; 16–20 лет – 13 г; 21–30 лет – 13,7 г.Надпочечник состоит из двух слоев: коркового (состоит из интерренальной ткани, имеет мезодермальное происхождение, в онтогенезе появляется несколько раньше мозгового) и мозгового слоя (состоит из хромаффинной ткани, имеет эктодермальное происхождение)Корковый слой надпочечников новорожденного ребенка значительно превосходит мозговой слой, у годовалого ребенка он в два раза толще мозгового. В 9-10 лет наблюдается усиленный рост обоих слоев, но к 11 годам толщина мозгового слоя превосходит толщину коркового слоя. Окончание формирования коркового слоя приходится на 10–12 лет. Толщина мозгового слоя у пожилых людей в два раза больше коркового.Корковый слой надпочечников состоит из четырех зон: верхней (клубочковой); очень узкой промежуточной; средней (наиболее широкой, пучковой); нижней сетчатой.Основные изменения в строении надпочечников начинаются с 20 и продолжаются до 50 лет. В этот период происходит разрастание клубочковой и сетчатой зон. После 50 лет наблюдается обратный процесс: клубочковая и сетчатая зоны уменьшаются до полного исчезновения, за счет этого увеличивается пучковая зона.Функции слоев надпочечников различны. В корковом слое образуются около 46 кортикостероидов (близки по химическому строению к половым гормонам), из них только 9 являются биологически активными. Кроме того, в корковом слое образуются мужские и женские половые гормоны, участвующие у детей в развитии половых органов до полового созревания.По характеру действия кортикостероиды подразделяют на два вида.I. Глюкокортикоиды (метаболокортикоиды). Эти гормоны усиливают расщепление углеводов, белков и жиров, переход белков в углеводы и фосфорилирование, увеличивают работоспособность скелетных мышц и снижают их утомляемость. При недостатке глюкокортикоидов прекращаются сокращения мышц (адинамия). К глюкокортикоидным гормонам относятся (в порядке убывания биологической активности) кортизол (гидрокортизон), кортикостерон, кортизон, 11-дезоксикортизол, 11-дегидрокортикостерон. Гидрокортизон и кортизон во всех возрастных группах увеличивают потребление кислорода сердечной мышцей.Гормоны коры надпочечников, особенно глюкокортикоиды, участвуют в защитных реакциях организма на стрессовые воздействия (болевые раздражения, холод, недостаток кислорода, большие физические нагрузки и др.). Также в реакции на стресс участвует адренокортикотропный гормон гипофиза.Наибольший уровень секреции глюкокортикоидов наблюдается в период полового созревания, после его окончания их секреция стабилизируется на уровне, близком к уровню взрослых.II. Минералокортикоиды. Они слабо влияют на углеводный обмен и в основном воздействуют на обмен солей и воды. К ним относятся (в порядке уменьшения биологической активности) альдостерон, дезоксикортикостерон, 18-окси-дезоксикортикостерон, 18-оксикортикостерон. Минералокортикоиды изменяют обмен углеводов, возвращают работоспособность утомленным мышцам путем восстановления нормального соотношения ионов натрия и калия и нормальной клеточной проницаемости, увеличивают реабсорбцию воды в почках, повышают артериальное кровяное давление. Недостаток минералокортикоидов уменьшает реабсорбцию натрия в почках, что может привести к смерти.Количество минералокортикоидов регулируется количеством натрия и калия в организме. Секреция альдостерона увеличивается при недостатке ионов натрия и избытке ионов калия и, напротив, тормозится при недостатке ионов калия и избытке ионов натрия в крови. Суточная секреция альдостерона с возрастом увеличивается и достигает максимума к 12–15 годам. У детей от 1,5–5 лет секреция альдостерона меньше, с 5 до 11 лет она достигает уровня взрослых. Дезоксикортикостерон усиливает рост организма, в то время как кортикостерон его подавляет.Разные кортикостероиды секретируются в различных зонах коркового слоя: глюкокортикоиды – в пучковой, минералокортикоиды – в клубочковой, половые гормоны – в сетчатой зоне. В период полового созревания секреция гормонов коры надпочечников наибольшая.Гипофункция коркового слоя надпочечников вызывает бронзовую, или аддисонову, болезнь. Гиперфункция коркового слоя приводит к преждевременному образованию половых гормонов, что выражается в раннем половом созревании (у мальчиков 4–6 лет появляется борода, возникает половое влечение и развиваются половые органы, как у взрослых мужчин; у девочек 2 лет наступают менструации). Изменения могут происходить не только у детей, но и у взрослых людей (у женщин появляются вторичные мужские половые признаки, у мужчин разрастаются грудные железы и атрофируются половые органы).В мозговом слое надпочечников непрерывно синтезируется из тирозина гормон адреналин и немного норадреналина. Адреналин оказывает влияние на функции всех органов, кроме секреции потовых желез. Он тормозит движения желудка и кишечника, усиливает и учащает деятельность сердца, суживает кровеносные сосуды кожи, внутренних органов и неработающих скелетных мышц, резко усиливает обмен веществ, повышает окислительные процессы и теплообразование, увеличивает расщепление гликогена в печени и мышцах. Адреналин усиливает секрецию адренокортикотропного гормона гипофиза, увеличивающего поступление в кровь глюкокортикоидов, что приводит к увеличению образования глюкозы из белков и повышению содержания сахара в крови. Существует обратная связь между концентрацией сахара и секрецией адреналина: уменьшение содержания сахара в крови приводит к секреции адреналина. В малых дозах адреналин возбуждает умственную деятельность, в больших дозах тормозит. Адреналин разрушается ферментом моноаминоксидазой.Надпочечники иннервируются симпатическими нервными волокнами, проходящими в чревных нервах. При мышечной работе и эмоциях происходит рефлекторное возбуждение симпатической нервной системы, что приводит к возрастанию поступления в кровь адреналина. В свою очередь, это увеличивает силу и выносливость скелетных мышц за счет трофического влияния, повышения кровяного давления и увеличения кровоснабжения.Гипофиз (нижний мозговой придаток). Это главная железа внутренней секреции, влияющая на работу всех эндокринных желез и многие функции организма. Расположен гипофиз в турецком седле, непосредственно под головным мозгом. У взрослых его вес – 0,55-0,65 г, у новорожденных – 0,1–0,15 г, в 10 лет – 0,33, в 20 лет – 0,54 г.В гипофизе различаются две доли: аденогипофиз (прегипофиз, более крупная передняя железистая часть) и нейрогипофиз (постгипофиз, задняя часть). Кроме того, выделяют среднюю долю, однако у взрослых она почти отсутствует и больше развита у детей. У взрослых аденогипофиз составляет 75 % гипофиза, промежуточная доля – 1–2 %, нейрогипофиз – 18–23 %. Во время беременности гипофиз увеличивается.В обе доли гипофиза поступают симпатические нервные волокна, которые регулируют его кровоснабжение. Аденогипофиз состоит из хромофобных и хромофильных клеток, которые, в свою очередь, делятся на ацидофильные и базофильные (количество этих клеток увеличивается в 14–18 лет). Нейрогипофиз образуют клетки нейроглии.Гипофиз вырабатывает больше 22 гормонов. Почти все они синтезируются в аденогипофизе.1. К наиболее важным гормонам аденогипофиза относят:а) гормон роста (соматотропный гормон) – ускоряет рост при относительном сохранении пропорций тела. Обладает видовой специфичностью;б) гонадотропные гормоны – ускоряют развитие половых желез и увеличивают образование половых гормонов;в) лактотропный гормон, или пролактин, – возбуждает отделение молока;г) тиреотропный гормон – потенцирует секрецию гормонов щитовидной железы;д) паратиреотропный гормон – вызывает увеличение функций околощитовидных желез и повышает содержание кальция в крови;е) адренокортикотропный гормон (АКТГ) – увеличивает секрецию глюкокортикоидов;ж) панкреотропный гормон – оказывает влияние на развитие и функции внутрисекреторной части поджелудочной железы;з) гормоны белкового, жирового и углеводного обмена веществ и др. – регулируют соответствующие виды обмена.2. В нейрогипофизе образуются гормоны:а) вазопрессин (антидиуретический) – суживает кровеносные сосуды, особенно матки, повышает кровяное давление, уменьшает мочеотделение;б) окситоцин – вызывает сокращение матки и повышает тонус мускулатуры кишечника, но не изменяет просвет кровеносных сосудов и уровень кровяного давления.Гормоны гипофиза оказывают влияние на высшую нервную деятельность, в малых дозах повышая, а в больших дозах угнетая ее.3. В средней доле гипофиза образуется только один гормон – интермедин (меланоцитостимулирующий гормон), вызывающий при сильном освещении движение псевдоподии клеток черного пигментного слоя сетчатой оболочки глаза.Гиперфункция передней части аденогипофиза вызывает следующие патологии: если гиперфункция происходит до окончания окостенения длинных костей – гигантизм (средний рост увеличивается до полутора раз); если после окончания окостенения – акромегалию (непропорциональный рост частей тела). Гипофункция передней части аденогипофиза в раннем детстве вызывает карликовый рост при нормальном умственном развитии и сохранении относительно правильных пропорций тела. Половые гормоны уменьшают действие гормона роста.У девочек становление системы «гипоталамическая область – гипофиз – кора надпочечников», приспосабливающей организм к напряжениям, а также медиаторов крови, происходит позднее, чем у мальчиков.Эпифиз (верхний мозговой придаток). Расположен эпифиз на заднем конце зрительных бугров и на четверохолмии, соединен со зрительными буграми. У взрослого человека эпифиз, или шишковидная железа, весит около 0,1–0,2 г. Развивается до 4 лет, а затем начинает атрофироваться, особенно интенсивно после 7–8 лет.Эпифиз оказывает угнетающее действие на половое развитие у неполовозрелых и тормозит функции половых желез у половозрелых. В нем выделяется гормон, который действует на гипоталамическую область и тормозит образование в гипофизе гонадотропных гормонов, что вызывает угнетение внутренней секреции половых желез. Гормон шишковидной железы мелатонин в отличие от интермедина сокращает пигментные клетки. Образуется мелатонин из серотонина.Железа иннервируется симпатическими нервными волокнами, поступающими из верхнего шейного узла.Эпифиз оказывает ингибиторное влияние на кору надпочечников. Гиперфункция эпифиза уменьшает объем надпочечников. Гипертрофия надпочечников снижает функцию эпифиза. Эпифиз влияет на углеводный обмен, его гиперфункция вызывает гипогликемию.Поджелудочная железа. Эта железа вместе с половыми железами относится к смешанным железам, являющимся органами как внешней, так и внутренней секреции. В поджелудочной железе гормоны образуются в так называемых островках Лангерганса (208-1760 тыс.). У новорожденных внутрисекреторная ткань железы больше внешнесекреторной. У детей и юношей происходит постепенное увеличение размеров островков.Островки Лангерганса имеют округлую форму, по строению они отличаются от ткани, синтезирующей поджелудочный сок, и состоят из двух видов клеток: альфа и бета. Альфа-клеток в 3,5–4 раза меньше, чем бета-клеток. У новорожденных количество бета-клеток только в два раза больше, но с возрастом их число увеличивается. В островках также присутствуют нервные клетки и многочисленные парасимпатические и симпатические нервные волокна. Относительное число островков у новорожденных в четыре раза больше, чем у взрослых. Их количество быстро сокращается на первом году жизни, с 4–5 лет процесс сокращения несколько замедляется, а к 12 годам количество островков становится таким же, как у взрослых, после 25 лет число островков постепенно уменьшается.В альфа-клетках образуется гормон глюкагон, в бета-клетках непрерывно секретируется гормон инсулин (примерно 2 мг в сутки). Инсулин оказывает следующее воздействие: уменьшает содержание сахара в крови, усиливая синтез гликогена из глюкозы в печени и мышцах; увеличивает проницаемость клеток для глюкозы и усвоение сахара мышцами; задерживает воду в тканях; активирует синтез белков из аминокислот и уменьшает образование углеводов из белка и жира. Под действием инсулина в мембранах мышечных клеток и нейронов открываются каналы для свободного прохождения внутрь сахара, что приводит к уменьшению его содержания в крови. Повышение содержания сахара в крови активирует синтез инсулина и одновременно тормозит секрецию глюкагона. Глюкагон увеличивает содержание сахара в крови, повышая переход гликогена в глюкозу. Уменьшение секреции глюкагона уменьшает содержание сахара в крови. Инсулин оказывает возбуждающее действие на секрецию желудочного сока, богатого пепсином и соляной кислотой, и усиливает перистальтику желудка.После введения большой дозы инсулина происходит резкое падение содержания сахара в крови до 45–50 мг%, что приводит к гипогликемическому шоку (сильным судорогам, нарушению деятельности головного мозга, потере сознания). Введение глюкозы немедленно его прекращает. Стойкое уменьшение секреции инсулина приводит к сахарному диабету.Инсулин обладает видовой специфичностью. Адреналин увеличивает секрецию инсулина, а секреция инсулина увеличивает секрецию адреналина. Блуждающие нервы увеличивают секрецию инсулина, а симпатические – тормозят ее.В клетках эпителия выводных протоков поджелудочной железы образуется гормон липокаин, который повышает окисление в печени высших жирных кислот и тормозит ее ожирение.Гормон поджелудочной железы ваготонин увеличивает активность парасимпатической системы, а гормон центропнеин возбуждает дыхательный центр и способствует переносу кислорода гемоглобином.Половые железы. Как и поджелудочная железа, относятся к смешанным железам. И мужские, и женские половые железы являются парными органами.А. Мужская половая железа – семенник (яичко) – имеет форму несколько сдавленного эллипсоида. У взрослого его вес составляет в среднем 20–30 г. У детей в 8-10 лет вес яичка составляет 0,8 г; в 12–14 лет -1,5 г; в 15 лет – 7 г. Интенсивный рост яичек идет до 1 года и с 10 до 15 лет. Период полового созревания мальчиков: с 15–16 до 19–20 лет, но возможны индивидуальные колебания.Снаружи яичко покрыто фиброзной оболочкой, от внутренней поверхности которой вдоль заднего края в него вклинивается разращение соединительной ткани. От этого разращения расходятся тонкие соединительно-тканные перекладины, делящие железу на 200–300 долек. В дольках различают семенные канальцы и промежуточную соединительную ткань. Стенка извитых канальцев состоит из двух родов клеток: первые образуют сперматозоиды, вторые участвуют в питании развивающихся сперматозоидов. Кроме того, в рыхлой соединительной ткани, связывающей канальцы, есть интерстициальные клетки. Сперматозоиды поступают по прямым и выносящим канальцам в придаток яичка, а из него в семявыносящий проток. Над предстательной железой оба семявыносящих протока переходят в семявыбрасывательные протоки, которые вступают в эту железу, пронизывают ее и открываются в мочеиспускательный канал. Предстательная железа (простата) окончательно развивается примерно к 17 годам. Вес простаты у взрослого – 17–28 г.Сперматозоиды – высокодифференцированные клетки длиной 50–60 мкм, которые образуются в начале полового созревания из первичных половых клеток – сперматогоний. В сперматозоиде различают головку, шейку и хвостик. В 1 куб. мм семенной жидкости содержится около 60 тыс. сперматозоидов. Сперма, извергающаяся за один раз, имеет объем до 3 куб. см и содержит около 200 млн сперматозоидов.Мужские половые гормоны – андрогены – образуются в интерстициальных клетках, которые названы железой половой зрелости, или пубертатной. К андрогенам относят: тестостерон, андростандион, андростерон и др. В интерстициальных клетках яичка образуются также женские половые гормоны – эстрогены. Эстрогены и андрогены – производные стероидов и близки по химическому составу.Дегидроандростерон имеет свойства мужского и женского половых гормонов. Тестостерон в шесть раз активнее дегидроандростерона.Б. Женские половые железы – яичники – имеют различные размеры, форму и вес. У женщины, достигшей половой зрелости, яичник имеет вид утолщенного эллипсоида весом в 5–8 г. Правый яичник несколько больше левого. У новорожденной девочки вес яичника – 0,2 г. В 5 лет вес каждого яичника составляет 1 г, в 8-10 лет – 1,5 г; в 16 лет – 2 г.Яичник состоит из двух слоев: коркового (в нем образуются яйцевые клетки) и мозгового (состоит из соединительной ткани, содержащей кровеносные сосуды и нервы). Женские яйцевые клетки образуются из первичных яйцевых клеток – оогоний, которые вместе с питающими их клетками (фолликулярными клетками) образуют первичные яйцевые фолликулы.Яйцевой фолликул представляет собой небольшую яйцевую клетку, окруженную рядом плоских фолликулярных клеток. У новорожденных девочек яйцевых фолликулов много, и они почти прилегают друг к другу, у пожилых женщин они исчезают. У 22-летней здоровой девушки в обоих яичниках число первичных фолликулов может доходить до 400 тыс. и более. В течение жизни только около 500 первичных фолликулов созревают и в них образуются яйцевые клетки, способные к оплодотворению, остальные фолликулы атрофируются. Полного развития фолликулы достигают в период половой зрелости, примерно с 13–15 лет, когда некоторые созревшие фолликулы секретируют гормон эстрон.Период полового созревания (пубертатный) продолжается у девочек с 13–14 до 18 лет. При созревании происходит увеличение размеров яйцевой клетки, фолликулярные клетки усиленно размножаются и образуют несколько слоев. Затем растущий фолликул погружается вглубь коркового слоя, покрывается волокнистой соединительно-тканной оболочкой, заполняется жидкостью и увеличивается в размере, превращаясь в граафов пузырек. При этом яйцевая клетка с окружающими ее фолликулярными клетками оттесняется к одной из сторон пузырька. Приблизительно за 12 дней до менструации граафов пузырек лопается, и яйцевая клетка вместе с окружающими ее фолликулярными клетками попадает в брюшную полость, из которой она сначала попадает на воронку яйцевода, а затем благодаря движениям мерцательных волосков – в яйцевод и матку. Происходит овуляция. Если яйцевая клетка оплодотворяется, она прикрепляется к стенке матки и из нее начинает развиваться зародыш.После овуляции стенки граафова пузырька спадаются. На поверхности яичника на месте граафова пузырька образуется временная железа внутренней секреции – желтое тело. Желтое тело выделяет гормон прогестерон, который подготавливает слизистую оболочку матки к восприятию зародыша. Если произошло оплодотворение, желтое тело сохраняется и развивается в течение всей беременности или большей ее части. Желтое тело во время беременности достигает 2 см и более и оставляет после себя рубец. Если оплодотворение не наступило, то желтое тело атрофируется и поглощается фагоцитами (периодическое желтое тело), после чего наступает новая овуляция.Половой цикл у женщин проявляется в менструациях. Первая менструация появляется после созревания первой яйцевой клетки, лопания граафова пузырька и развития желтого тела. В среднем половой цикл продолжается 28 дней и делится на четыре периода:1) период восстановления слизистой оболочки матки в течение 7–8 дней, или период покоя;2) период разрастания слизистой оболочки матки и ее увеличения в течение 7–8 дней, или предовуляционный, вызываемый усиленной секрецией фолликулотропного гормона гипофиза и эстрогенов;3) секреторный период – выделение секрета, богатого слизью и гликогеном, в слизистой оболочке матки, соответствующий созреванию и разрыву граафова пузырька, или овуляционный период;4) период отторжения, или послеовуляционный, продолжающийся в среднем 3–5 дней, в течение которого матка тонически сокращается, ее слизистая оболочка отторгается небольшими кусками и выделяется 50-150 куб. см крови. Последний период наступает только при отсутствии оплодотворения.

К эстрогенам относятся: эстрон (фолликулярный гормон), эстриол и эстрадиол. Они образуются в яичниках. Там же секретируется небольшое количество андрогенов. В желтых телах и плаценте образуется прогестерон. В период отторжения прогестерон тормозит секрецию фолликулотропного гормона и других гонадотропных гормонов гипофиза, что приводит к снижению количества синтезируемых эстрогенов в яичнике.Половые гормоны оказывают значительное влияние на обмен веществ, чем обусловливают количественные и качественные особенности обмена веществ мужского и женского организмов. Андрогены усиливают синтез белка в организме и мышцах, что увеличивает их массу, способствуют образованию костей и потому повышают вес тела, уменьшают синтез гликогена в печени. Эстрогены, наоборот, увеличивают синтез гликогена в печени и отложение жира в организме.

30.ИММУНИТЕТ (лат. immunitas освобождение, избавление от чего-либо) - невосприимчивость организма к инфекционным и неинфекционным агентам и веществам, обладающим антигенными свойствами. Такими агентами являются бактерии, вирусы, нек-рые ядовитые вещества растительного и животного происхождения, донорская кровь и другие продукты, чужеродные для организма. Чужеродными они являются лишь при условии поступления во внутреннюю среду организма без изменения их антигенных свойств. Пищевые вещества, утрачивающие в процессе пищеварения свои антигенные свойства, иммунных реакций не вызывают. И. обеспечивается комплексом клеточных и гуморальных, специфических и неспецифических защитных реакций, благодаря к-рым поддерживается постоянство внутренней среды организма. В зависимости от типа чужеродных антигенов, обусловливающих возникновение невосприимчивости, различают антибактериальный, антитоксический, противовирусный, противоопухолевый, трансплантационный иммунитет и др. Организм отвечает иммунными реакциями и на собственные клетки, изменившиеся в антигенном отношении под действием различных агентов (напр., вирусов, токсинов) и ставшие в результате этого чужеродными. Различают два основных вида иммунитета: врожденный и приобретенный. Врожденный иммунитет (видовой, наследственный, естественный, конституциональный иммунитет) присущ тому или иному виду животных и передается по наследству, как и другие генетические признаки. Так, люди не восприимчивы к чуме рогатого скота, крысы и мыши устойчивы к дифтерийному токсину, а кролики, кошки и собаки - к столбнячному. Существует различная степень напряженности врожденного иммунитета: от абсолютной резистентности (устойчивости) к какому-либо микроорганизму, что наблюдается редко, до относительной невосприимчивости, к-рая может быть преодолена в результате различных воздействий (увеличение дозы заражающего агента, ослабление защитных сил организма, напр, при понижении температуры, и т. д.). Приобретенный иммунитет возникает в результате перенесенной инф. болезни или после вакцинации и по наследству не передается. Одна из главных особенностей приобретенного иммунитета - его строгая специфичность: он вырабатывается лишь к определенному микроорганизму (антигену), попавшему или введенному в организм. Различают активно и пассивно приобретенный иммунитет. Активно приобретенный иммунитет может возникать в результате перенесенного заболевания или латентной инфекции, а также после вакцинации. Активно приобретенный иммунитет устанавливается через 1-2 нед. после начала заболевания и сохраняется относительно долго - годами или десятками лет. Так, после кори остается пожизненный И. При других инфекциях, напр, при гриппе, активно приобретенный иммунитет сохраняется относительно недолго - в течение 1-2 лет. Пассивно приобретенный иммунитет возникает у плода, получающего через плаценту антитела от матери, поэтому новорожденные остаются в течение определенного времени невосприимчивыми к не к-рым инфекциям, напр, к кори. Пассивно приобретенный иммунитет может быть создан и искусственно - путем введения в организм антител (иммуноглобулинов), полученных от переболевших какой-либо инфекционной болезнью либо вакцинированных людей или животных. Пассивно приобретенный иммунитет устанавливается быстро (через несколько часов после введения им муноглобулина) и сохраняется непродолжительное время (в течение 3-4 нед.). Факторы и механизмы врожденного и приобретенного иммунитета разнообразны. Одним из важнейших факторов врожденного иммунитета является отсутствие рецепторов к вирусам на поверхности клеток, в результате чего вирусы не могут адсорбироваться на клетках и, следовательно, проникать в них. У крыс, естественно резистентных к дифтерийному токсину, последний не адсорбируется клетками и выводится из организма без изменения. Естественная невосприимчивость к токсинам может проявляться и в тех случаях, если рецепторы, имеющие сродство к токсину, локализуются в органах или тканях, на к-рые токсин не оказывает никакого вредного действия. Нормально функционирующие кожа и слизистые оболочки составляют первую линию защиты организма от возбудителей бактериальных и вирусных инфекций. В выделениях потовых и сальных желез содержатся вещества, губительно действующие на бактерии. Их относят к естественным факторам иммунитета. Так, в отделяемом конъюнктивы, слизистых оболочек полости рта, носа, глотки содержится лизоцим - белок, способствующий разрушению клеточных стенок нек-рых бактерий. К естественным факторам И. относятся также ингибиторы ферментативной активности бактерий, ингибиторы вирусов, секрет слизистой оболочки желудка и другие вырабатываемые организмом вещества. Важными факторами врожденного иммунитета являются комплемент, представляющий собой сложную систему сывороточных белков, а также нормальные антитела, принимающие участие во многих защитных реакциях. К естественным факторам относятсяинтерфероны - особые белки, вырабатываемые клетками и препятствующие размножению (репродукции) вирусов. Важнейшими защитными реакциями являются воспаление, а также фагоцитоз, - т. е. поглощение и переваривание фагоцитарными клетками микроорганизмов и других чужеродных агентов. Фагоцитоз осуществляют клетки двух систем: микрофаги (гранулоциты) и макрофаги - подвижные клетки (моноциты) и мононуклеарные клетки, фиксированные в тканях печени, селезенки, лимф, узлов (см. Система мононуклеарных фагоцитов). В реакции фагоцитоза различают несколько стадий: присоединение фагоцита к микроорганизму, поглощение его и ферментативное переваривание в особых структурах фагоцита - фаголизосомах. Макрофаги выполняют более сложную функцию, чем микрофаги; кроме бактерий они могут переваривать грибки, простейшие, комплексы антиген-антитело, измененные собственные клетки организма, в т. ч. и клетки злокачественных опухолей. Макрофаги принимают также участие в процессе образования антител. Переваривание микроорганизмов или немикробных антигенов, поглощенных макрофагами, осуществляется посредством набора лизосомных ферментов. В процессе фагоцитоза могут возникать различные промежуточные продукты, обеспечивающие инактивацию микроорганизмов. Не все микроорганизмы одинаково хорошо инактивируются в процессе фагоцитоза, нек-рые из них могут размножаться в фагоцитах. Существуют факторы, способствующие фагоцитозу - это нормальные и иммунные антитела, к-рые вместе с другими компонентами сыворотки крови, соединяясь с микроорганизмом (антигеном), способствуют фагоцитозу и называются опсонинами. Активность опсонинов и фагоцитов определяется так наз. опсонофагоцитарным индексом путем сравнительного подсчета фагоцитированных бактерий, обработанных нормальной и иммунной сыворотками крови. Способность организма отвечать иммунной реакцией на чужеродные антигены начинает формироваться во внутриутробном периоде и уже хорошо выражена к первому году жизни ребенка. Как показали экспериментальные исследования, животное может утратить способность реагировать на определенный антиген, если его предварительно ввести в организм в эмбриональном периоде или вскоре после рождения. Это состояние получило название иммунологической толерантности, т. е. утраты организмом способности отвечать специфической иммунной реакцией на тот или другой антиген. Специфический иммунитет, активно приобретаемый в результате перенесенной инф. болезни или вакцинации, зависит от функции иммунокомпетентных клеток - Т- и В-лимфоцитов (соответственно, тимусзависимые и костномозговые лимфоциты). Эти клетки благодаря наличию на поверхности их мембран особых химических структур - рецепторов распознают чужеродные антигены и отвечают на них реакцией: Т-лимфоциты превращаются в различные по своей функции сенсибилизированные (активные) лимфоциты, а В-лимфоциты - в плазматические клетки, являющиеся продуцентами специфических иммуноглобулинов - антител. Т-лимфоциты обладают неодинаковыми функциональными свойствами. Различают Т-лимфоциты, распознающие антигены, и Т-лимфоциты, помогающие В-лимфоцитам продуцировать антитела (клетки Т-помощники), Т-лимфоциты, подавляющие иммунный ответ (клетки Т-супрессоры), Т-лимфоциты, обладающие цитотоксическими свойствами, осуществляющие разрушение генетически чужеродных клеток (клетки Т-эффекторы). Наряду с короткоживущими плазматическими клетками, продуцирующими антитела, существуют долгоживущие В-лимфоциты, обеспечивающие иммунологическую память. Антитела выполняют важнейшую защитную функцию: они нейтрализуют активность токсинов, вирусов, бактерий, делают их более доступными для фагоцитов, в к-рых и происходит окончательное разрушение патогенного агента. Особенно велико значение антител при возникновении иммунитета против вирусов. Специфические антитела, соединяясь с вирусом, блокируют его рецепторы, благодаря чему вирус утрачивает способность адсорбироваться на чувствительной клетке и проникать в нее. Антитела, присутствующие в секретах дыхательных путей, играют важную роль в инактивации вирусов гриппа и других возбудителей острых респираторных заболеваний. Широкое применение нашли антитела в виде препаратов специфических иммуноглобулинов, предназначенных для профилактики вирусных инфекций (кори, вирусного гепатита), для нейтрализации змеиного яда, а также для профилактики и лечения токсинемических инфекций (дифтерии, столбняка, ботулизма). Специфические антитела широко применяют при диагностике для определения бактерий, вирусов, антигенов в клетках, напр, в эритроцитах, и др. Перспективно использование в мед. практике антител, образуемых плазматическими клетками одного клона и в силу этого более специфичных (моноклональных антител). Клеточные и гуморальные реакции, обеспечивающие защиту организма от патогенных и непатогенных агентов, обладающих чужеродными антигенными свойствами, функционируют в тесном взаимодействии и находятся под общим контролем организма. Они направлены не только против патогенных микроорганизмов, но и против поступающих в организм других чужеродных веществ, напр, компонентов пищи, проникающих в кровь при нарушениях функции пищеварительного тракта, пыльцы растений, поступающей через слизистую оболочку дыхательных путей, крови донора, не соответствующей группе крови реципиента, клеток и тканей органов (почки, сердца, кожи) при иммунол, несовместимости, т. е. при различии антигенов клеток донора и реципиента.

Возрастные особенности иммунитета: Иммунная система новорожденных, детей и подростков Второй период развития иммунной системы (после рождения) характеризуется дальнейшим постепенным ее совершенствованием под воздействием разнообразных факторов внешней и внутренней среды организма. Наибольшее значение для полного созревания материального субстрата иммунной системы и тренировки ее функциональных возможностей имеют антигенные стимулы со стороны микрофлоры и других экзоантигенов. На протяжении всего времени развития детей и подростков происходит адаптация систем и звеньев иммунной системы к динамичным условиям внешней среды, а также координация иммунологичеких механизмов с нейроэндокринной регуляцией функций организма. Несмотря на кажущуюся анатомическую обособленность иммунных органов и клеток, они являются частью целостного организма. Be только патология иммунитета отражается на работе других орга-аов и систем, но и иммунная система реагирует в большей или меньшей мере на патологию других систем организма. Особенно она чувствительна к метаболическим нарушениям, которые вносят дисбаланс в физиологию иммунокомпетентных клеток, извращают продукцию аитокинов. Понятно, что пока в основном не завершится процесс становления иммунной системы (до 16-18 лет), воздействие неблагоприятных химических, биологических и физических факторов вызывает более глубокое нарушение иммунитета, чем в зрелом возрасте. В иммунной системе детей, от момента рождения до периода зрелости, закономерно происходят критические морфофункциональные сдвиги. Эти этапные моменты в онтогенезе иммунной системы совпадают с переходными периодами общего развития детского организма. Иногда их образно называют вехами, или верстовыми столбами (milestones). Первый иммунный кризис по времени совпадает с периодом новорожденности, когда организм впервые встречается с огромным количеством чужеродных антигенов. Лимфоидная ткань, клетки, ответственные за механизмы неспецифической реактивности, получают колоссальный стимул для развития уже в первые часы. Разнообразная микрофлора активно колонизирует желудочно-кишечный тракт, дыхательные пути, кожу, при этом на организм обрушивается водопад антигенов. Конечно, большое значение имеет качественный состав естественной микрофлоры тела: если быстро сформируется нормальная микробиота толстого кишечника (с преобладанием бифидобактерий и других анаэробов), то развитие иммунной системы пойдет правильнее. Физиологическое развитие лимфоидного аппарата новорожденного характеризуется быстрыми темпами заселения лимфоцитами брыжеечных, мезентериальных и других периферических лимфоузлов, увеличением их массы и нарастанием функциональной активности. В них резко возрастает концентрация плазматических клеток, синтезирующих иммуноглобулины. Отставание в развитии лимфоидной системы отмечено у детей, рожденных при помощи операции кесарева сечения. При этом заселение полостей организма микрофлорой происходит с существенной задержкой, к тому же качество этой микрофлоры отличается от приобретенной при нормальных родах. Показано на животных, выращенных в безмикробных условиях (гнотобионтах), что их лимфоидный аппарат недостаточно развит из-за отсутствия антигенной стимуляции. Только после рождения впервые активно и широко включаются механизмы иммунного реагирования Т- и В-систем. Однако в этих реакциях преобладает супрессорный компонент, потому что процесс антителообразования (реакция В-системы) и цитотоксические реакции Т-клеток еще развиты недостаточно. Интересно отметить, что количество Т- и В-клеток в крови новорожденных чаще всего соответствует их содержанию у взрослых. Главное отличие - функциональная неполноценность регулятор-ных и исполнительных клеток из-за несовершенства системы цито-киновой регуляции иммунной системы у детей раннего возраста. Как было отмечено выше, иммунная регуляция осуществляется противовоспалительными цитокинами - ИЛ-1, ИЛ-6, ИЛ-8, ИЛ-12, фактором некроза опухоли (ФНО), альфа- и гамма-интерферонами и др., а также цитокинами, непосредственно регулирующими направление и спектр иммунного ответа (ИЛ-2, ИЛ-5, ИЛ-7). Другие участвуют на этапе более ранней регуляции миеломоноцитопоэза и лимфопоэза (ИЛ-3, колониестимулирующие факторы). В разных ситуациях некоторые цитокины способны осуществлять противоположные эффекты, что свидетельствует о широком спектре их физиологических функций. Механизмы функционирования многокомпонентного ансамбля цитокинов, участвующих в регуляции системы, еще недостаточно изучены. Однако уже сейчас можно с уверенностью говорить о том, что слаженная работа клеток иммунной системы зависит, с одной стороны, от эффективности синтеза этих цитокинов разнообразными продуцентами (макрофаги, моноциты, Т- и В-клетки, ЕК-клетки, эпителиальные клетки, фибробласты, стромальные клетки костного мозга и др.), с другой - от способности чувствительных клеток иммунной системы воспринимать цитокиновые сигналы и адекватно отвечать на них. Это зависит от качества экспрессии на мембранах клеток соответствующих рецепторов. Естественно, что для созревания сложной системы цитокиново-клеточной иммунной регуляции системы требуются годы. Если судить по внешним проявлениям, то для периода новорожденности характерен слабый иммунный ответ на антигены из-за незрелости Т- и В-лимфоцитов, а также в связи с функциональной слабостью фагоцитоза (мала концентрация опсонинов в крови, снижен процессинг антигенов макрофагами, что ведет к невыразительной антигенной презентации). Еще недостаточно развиты естественные киллеры (ЕК-клетки). Этим, в частности, объясняется низкий уровень гаммаинтерферона. В силу несостоятельности иммунной системы ребенка раннего возраста основные защитные функции выполняют пассивно приобретенные сывороточные и секреторные антитела. Сывороточные антитела в основном представлены материнским IgG, которые совершили трансплацентарный переход в эмбриональной стадии. Часть сывороточных иммуноглобулинов диффундирует из материнского молока в кровоток ребенка из кишечника. При инфицировании иммунная система новорожденного способна к первичному гуморальному иммунному ответу с преимущественным синтезом IgM, иммунологическая память еще не функционирует. Секреторные иммуноглобулины, в основном в виде SIgA, в большом количестве поступают с материнским молоком и осуществляют функцию местного иммунитета в желудочно-кишечном тракте. В целом для новорожденных характерна низкая резистентность по отношению к различным бактериям, особенно к условно-патогенной, гноеродной (слабый фагоцитоз), грамотрицательной (низкая активность системы комплемента и антител) микрофлоре. В этот период отмечается опасная тенденция генерализации гнойно-воспалительных инфекций с переходом в сепсис. Второй критический период в иммунном статусе ребенка приходится на возраст 3-6 мес. Он характеризуется постепенным ослаблением пассивного гуморального иммунитета из-за уменьшения концентрации материнских иммуноглобулинов, полученных еще в эмбриональном периоде. Полное исчезновение молекул материнских антител происходит значительно позднее. Высокочувствительные методы иммунного анализа обнаруживают их до 18 мес, что имеет определяющее значение при решении вопроса о происхождении антител к возбудителю СПИДа в крови ребенка. В это время на фоне сокращения запаса материнских антител и преобладания супрессорной реакции иммунной системы младенца могут проявляться скрытые до сих пор признаки врожденных имму-нодефицитов, нередко развивается ранняя иммунопатология в виде пищевой аллергии. Из-за отсутствия местного иммунитета слизистых и слабого Т-клеточного иммунного ответа дети остаются высокочувствительными ко многим вирусам, особенно поражающим дыхательные пути. На вакцинацию организм ребенка 1-го года жизни отвечает в основном продукцией IgM-антител, без формирования иммунологической памяти. Чтобы получить нормальный вторичный иммунный ответ с IgG-антителами и стойкой иммунологической памятью, требуется 2-3 ревакцинации против столбняка, дифтерии, коклюша, полиомиелита. Постепенное совершенствование иммунной системы организма приводит к тому, что к концу 1 -го года жизни ряд ее функций нормализуется. В частности, концентрация лимфоцитов в крови достигает максимума, хелперная функция уже доминирует над супрессорной, начинается более активный синтез собственного IgG. Однако, способность к полноценному синтезу антител класса IgG, соответствующего уровню взрослых, появляется только к 4-6 годам. Особенно долго налаживается продукция антител субклассов IgG2 и IgG4. Местный иммунитет слизистых дыхательных путей и пищеварительного тракта, который обеспечивается сочетанным действием секреторных антител класса IgA и неспецифических гуморальных факторов (лактоферрина, лизоцима, ионов тиоцианата, лактопероксидазы) окончательно формируется только к 7-8 годам жизни. Клинические иммунологи дополнительно выделяют критические зоны в возрасте двух лет и 4-6-го годов жизни ребенка. В двухлетнем возрасте, когда дети активно передвигаются и все шире контактируют с окружающей средой, собственный иммунитет еще далеко не совершенен, а факторы пассивного иммунитета уже отсутствуют. В это время могут рельефно проявиться малые врожденные дефекты иммунного статуса, а также иные варианты иммунопатологии - аутоиммунный диатез, иммунокомплексные болезни. Часто наблюдаются повторные вирусно-бактериальные инфекции органов дыхания и кишечного тракта. С первой недели жизни до 4-6 лет формула крови характеризуется абсолютным и относительным лимфоцитозом (физиологический лимфоцитоз). Только к 6 годам у всех детей определяется «взрослый» тип формулы крови. Перестройка гемопоэза у ряда детей может сопровождаться новым учащением иммунопатологических состояний, аллергий, проявлением поздних врожденных иммунодефицитов. Таким образом, в возрасте 2 и 4-6 лет есть риск развития заболеваний преимущественно у детей с врожденной патологией какого-либо звена иммунитета. Третий иммунный кризис в жизни всех детей связан с резкой гормональной перестройкой организма подростков. У девочек этот этап начинается с 12-13 лет, у мальчиков - с 14-15 лет. В иммунной системе при этом происходят следующие изменения:уменьшается масса лимфоидных органов, что связано с пубертатным скачком роста и веса детей;подавляется функция Т-системы (клеточный иммунитет); стимулируется функция В-системы (гуморальный иммунитет). Сдвиги в функции иммунитета обусловлены повышенной секрецией половых гормонов. При этом отмечается половое различие в характере этих сдвигов. У юношей андрогенная стимуляция вызывает увеличение абсолютного числа В-лимфоцитов (CD 19+). У девушек усиление гуморального звена иммунитета связано с повышением количества и активизацией Тх2. Как показано в главе 12, субпопуляции Т-хелперов дифференцируются из Тх0 под влиянием разных интерлейкинов, одни из них 1-12, у-интерферон - стимулируют созревание Txl, другие (ИЛ-4) ингибируют дифференциацию Тх0 в Txl и способствуют формированию Тх2. Таким образом, цитокиновая регуляция осуществляет систему «сдержек и противовесов», гармонизируя физиологический баланс клеточного и гуморального звеньев иммунитета путем стимуляции или ингибиции дифференциации Тх0 в Txl или в Тх2. В антиинфекционной защите организма функции распределяются следующим образом:

клеточное звено иммунного ответа (линия Tx0-Txl с активацией цитотоксических лимфоцитов) преимущественно защищает от внутриклеточных паразитических агентов - вирусов, некоторвк бактерий, грибков и простейших; гуморальное звено иммунного ответа (линия Тх0-Тх2 с активацией В-лимфоцитов) гарантирует эффективную защиту от внеклеточных паразитов - бактерий и токсинов. Такой резкой иммунный поворот в пубертатном периоде совпадает с новым подъемом хронических заболеваний лимфопролифератив-ной и аутоиммунной природы, при этом активизируются дремлющие вирусные инфекции и присоединяются новые. Иммунная система становится чувствительной к действию внешних факторов химической, физической и биологической природы. В это время устанавливается тот фенотипический вариант иммунного статуса, который впоследствии будет определять сильный или слабый тип иммунного ответа организма взрослого человека на различные антигенные стимулы. Вместе с тем у большинства подростков аллергические заболевания протекают уже легче, чем раньше. В течение нескольких лет происходит постепенное выравнивание всех систем иммунорегуляции с выходом на «взрослый» фенотип иммунного статуса. Его принято считать наиболее адекватным тем вызовам, которые бросает среда обитания организму человека. Существенных различий в иммунной системе женщин и мужчин не отмечается.

31.Развитие половых органов ребенка. Период полового созревания Биологической зрелости организм человека достигает в течение периода полового созревания. В это время происходит пробуждение полового инстинкта, поскольку дети не рождаются с развитым половым рефлексом. Сроки наступления полового созревания и его интенсивность различны и зависят от многих факторов: состояния здоровья, характера питания, климата, бытовых и социально-экономических условий. Немаловажную роль играют и наследственные особенности. В городах половое созревание подростков обычно наступает раньше, чем в сельской местности.В переходный период происходит глубокая перестройка всего организма. Активизируется деятельность желез внутренней секреции. Под влиянием гормонов гипофиза ускоряется рост тела в длину, усиливается деятельность щитовидной железы, надпочечников, начинается активная деятельность половых желез. Повышается возбудимость вегетативной нервной системы. Под влиянием половых гормонов происходит окончательное формирование половых органов и половых желез, начинают развиваться вторичные половые признаки. У девочек округляются контуры тела, усиливается отложение жира в подкожной клетчатке, увеличиваются и развиваются грудные железы, кости таза раздаются в ширину. У мальчиков растут волосы на лице и теле, ломается голос, происходит накопление семенной жидкости.Половое созревание девочек. У девочек половое созревание начинается раньше, чем у мальчиков. В 7–8 лет происходит развитие жировой клетчатки по женскому типу (жир откладывается в молочных железах, на бедрах, ягодицах). В 13–15 лет идет быстрый рост тела в длину, появляется растительность на лобке и в подмышечных впадинах; изменения происходят и в половых органах: матка увеличивается в размерах, в яичниках созревают фолликулы, начинается менструация. В 16–17 лет заканчивается формирование скелета по женскому типу. В 19–20 лет окончательно стабилизируется менструальная функция, наступает анатомическая и физиологическая зрелость.Половое созревание мальчиков. Начинается половое созревание у мальчиков в 10–11 лет. В это время усиливается рост полового члена и яичек. В 12–13 лет изменяется форма гортани и ломается голос. В 13–14 лет формируется скелет по мужскому типу. В 15–16 лет усиленно растут волосы под мышками и на лобке, появляется растительность на лице (усы, борода), увеличиваются яички, начинается непроизвольное извержение семени. В 16–19 лет идет нарастание мышечной массы и увеличение физической силы, заканчивается процесс физического взросления.Особенности периода полового созревания подростка. В период полового созревания перестраивается весь организм, меняется психика подростка. При этом развитие происходит неравномерно, одни процессы опережают другие. Например, рост конечностей опережает рост туловища, и движения подростка становятся угловатыми из-за нарушения координационных отношений в центральной нервной системе. Параллельно с этим возрастает мышечная сила (от 15 до 18 лет масса мышц увеличивается на 12 %, в то время как с момента рождения ребенка до 8 лет она увеличивается всего лишь на 4 %).За столь бурным ростом костного скелета и мышечной системы не всегда поспевают внутренние органы – сердце, легкие, желудочно-кишечный тракт. Так, сердце опережает в росте кровеносные сосуды, из-за чего кровяное давление повышается и затрудняет работу самого сердца. В то же время бурная перестройка всего организма предъявляет повышенные требования к работе сердечно-сосудистой системы, а недостаточная работа сердца («юношеское сердце») приводит к головокружениям и похолоданию конечностей, к головным болям, быстрой утомляемости, периодическим приступам вялости, обморочным состояниям из-за спазмов мозговых сосудов. Как правило, эти негативные явления проходят с окончанием полового созревания.Резкое усиление деятельности желез внутренней секреции, интенсивный рост, структурные и физиологические изменения в организме повышают возбудимость центральной нервной системы, что отражается на эмоциональном уровне: эмоции подростков подвижны, изменчивы, противоречивы; повышенная чувствительность сочетается в них с черствостью, застенчивость – с развязностью; проявляются чрезмерный критицизм и нетерпимость к родительской опеке.В этот период иногда наблюдаются снижение работоспособности, невротические реакции – раздражимость, плаксивость (особенно у девочек в период менструации).Возникают новые отношения между полами. У девочек повышается интерес к своей внешности. Мальчики стремятся показать перед девочками свою силу. Первые «любовные переживания» подчас выбивают подростков из колеи, они становятся замкнутыми, начинают хуже учиться.

32.Такое понятие, как гигиена сна, включает в себя ряд простых правил, соблюдение которых даст вам качественный и приятный сон. Основная причина бессонницы (инсомнии) всегда связана с несоблюдением правил гигиены сна. У многих людей бессонница - результат накапливаемых в течение долгого периода вредных привычек, которые часто приводят к нарушениям сна.Правила гигиены сна:1. Не находитесь долго в кровати перед сномДолгое лежание в постели делает сон отрывочным и менее эффективным. Нахождение в кровати не должно превышать время сна более чем на 15 минут.Не хотите спать - не пытайтесь уснуть. Не следует ложиться слишком рано и спать днем. Ложитесь спать в одно и то же время – это одно из основных правил гигиены сна. Если не удается уснуть в течение получаса, то посмотрите телевизор, послушайте легкую музыку, почитайте или займитесь чем-либо другим.

это состояние покоя, необходимое для восстановления функций различных органов и систем, в первую очередь нервной системы. Большое значение для засыпания и сна имеет состояние различных отделов головного мозга, перевозбуждение их и утомление нервных клеток. Дети младшего возраста должны спать не менее 10 ч в сутки, дети старших классов и подростки — не менее 9 ч. Однако в быту эта продолжительность сна часто уменьшается за счет выполнения школьных заданий или сидения за компьютером.Перед сном надо проветрить комнату, в теплую погоду оставлять открытыми на всю ночь форточку, фрамугу или окно. Постель должна быть жесткой. Подросткам нельзя спать на перине или раскладушке — это может вызвать искривление позвоночника. Нежелательно много есть и пить на ночь. Не следует смотреть фильмы ужасов или боевики, выяснять отношения с кем-либо из членов семьи, задерживаться в гостях или на дискотеке после 22 часов.Лечь в постель надо не позднее 23 ч, так как доказано, что 1 ч сна до полуночи равен по значению 2 ч сна после полуночи. Перед сном надо посвятить 30—40 мин личному туалету — теплый душ, отправление физиологических потребностей, переодевание в ночную одежду.

33.Физическая РаботоспособностьРаботоспособность

- это свойство человека в течение заданного времени и с определенной эффективностью выполнять максимально возможное количество работы. Работоспособность человека зависит от уровня его подготовки, степени закрепленности навыков и опыта (техника и стаж занятия спортом), его физического и психического состояния и других причин и обстоятельств.Спортивная форма

- это состояние организма, термин обозначает готовность спортсмена к выполнению того или иного двигательного действия в максимальном темпе, длительности и т. п. Он носит собирательный характер, т. е. составляющими являются физические, технические, функциональные, тактические, психологические и другие качества. Спортивная форма может быть хорошей, если тренировки проходят на фоне полноценного здоровья спортсмена. Только здоровый спортсмен может переносить большие по объему и интенсивности нагрузки, которые являются факторами стабилизации спортивной формы, функционального состояния. В поддержании гомеостаза и его регуляции важнейшая роль принадлежит нервной системе, железам внутренней секреции, особенно гипоталамо-гипофизарной и лимбической системам мозга. В условиях спортивной тренировки, когда происходит долговременная адаптация организма к физическим нагрузкам, имеют место морфофункциональные сдвиги в состоянии системы микроциркуляции крови. Эти изменения, возникающие непосредственно во время мышечной деятельности, сохраняются в организме как следствие и после ее окончания. Накапливаясь в течение длительного времени, они постоянно приводят к формированию более экономного типа реагирования микрососудов. Специфика тренировки в том или ином виде спорта обусловливает дифференцированные преобразования микрососудов. Исследования показывают, что большие (чрезмерные) физические нагрузки способствуют значительным сдвигам в морфологических структурах и в химизме тканей и органов, а также ведут к срыву адаптационно-приспособительных механизмов, что проявляется в возникновении инфекционных (ОРВИ, грипп и др.) заболеваний и повреждений опорно-двигательного аппарата. Утомление. Усталость. ПеретренированностьУтомление

— особый вид функционального состояния человека, временно возникающий под воздействием продолжительной или интенсивной работы и приводящий к снижению ее эффективности. Утомление проявляется в уменьшении силы и выносливости мышц, в возрастании затрачиваемой энергии при выполнении одной и той же работы, ухудшении координации движений, в замедлении скорости переработки информации, ухудшении памяти, затруднении процесса сосредоточения и переключения внимания и пр. Мерилом утомления являются изменения количественных и качественных показателей работы, а также физических функций во время работы или в ответ на предъявление специальных тестов. Хорошим средством профилактики утомления при любых видах деятельности является повышение мотивации труда и физической подготовленности.Усталость

- субъективное ощущение утомления, отражает множиство изменений биохимических, физических и психо-физиологических функций, появляющихся во время длительной или интенсивной работы. Вызывает желание либо прекратить ее, либо снизить нагрузку.Утомляемость - особенность организма в целом или отдельных его частей быть подверженными утомлению.Глубина развивающегося утомления при одной и той же нагрузке зависит от степени адаптации человека к какому-либо виду деятельности и его тренированности, физического и психического состояния работающего, уровней мотивации и нервно-эмоционального напряжения. При физическом труде, тренировках любой тяжести (интенсивности), а также умственном труде утомляемость тем больше, чем ниже уровень общей физической работоспособности.

Нервно-эмоциональное напряжение. Особое состояние, возникающее в процессе работы или общения, где доминирует эмоциональная составляющая, придающая повышенную оценку всем или каким-либо элементам деятельности. Нервно-эмоциональное напряжение характеризуется высоким тонусом ЦНС и повышенной активностью гормонального звена регуляции.Умственное утомление. Проявляется снижением эффективности интеллектуального труда, ослаблением внимания (главным образом, человеку трудно сосредоточиться), замедлением мышления. Физическое утомление. Выражается нарушением функции мышц: снижением скорости, силы, точности, согласованности и ритмичности движений и т. д. Уменьшается работоспособность.Хроническое утомление. При постоянном утомлении (переутомлении) возникают выраженные дистрофические и деструктивные изменения части мышечных волокон. Одной из причин их появления является гипоксия или нарушение микроциркуляции тканей ОДА. Хроническое утомление, потеря эластичности мышц (имеет место гипертонус, мышечный дисбаланс и т. п.), мышечные боли, эпизодические спазмы мышц являются предполагающим фактором возникновения травм опорно-двигательного аппарата. При хроническом утомлении в тканях происходит недоокисленных продуктов обмена веществ, а это, в свою очередь, приводит к изменению коллоидного состава тканей, нарушениям кровообращения, что проявляется повышенной чувствительностью и болью в мышцах. В этой фазе колоидных реакций еще не отмечается отечественных органических изменений в мышцах и возвращение их к норме легко осуществимо. Следует применить криомассаж, сегментарный массаж, гидропроцедуры, фонофорез на фоне снижения физических нагрузок, особенно скоростных и скоростно-силовых.Нерациональное применение физических нагрузок (тренировок) может привести к функциональным перегрузкам тканей ОДА, а в дальнейшем, если тренировки будут проводиться в таком же режиме, они будут способствовать возникновению травм и заболеваний ОДА. Большие физические нагрузки при тренировках в среднегорье и зонах жаркого и влажного климата приводят к обострению хронических заболеваний или к перенапряжению кардиореспираторной системы.При интенсивной мышечной работе расход энергии резко возрастает, в связи с чем более интенсивно протекает процесс окисления веществ в мышечной ткани, увеличивается доставка кислорода к скелетным мышцам. Если кислорода для полного окисления веществ не хватает, то оно происходит частично и в организме накапливается большое количество недоокисленных продуктов, таких, как молочная и пировиноградная кислоты, мочевина и др. Это приводит к отклонению ряда важных констант внутренней среды организма, что не позволяет ему продолжать мышечную деятельность.Переутомление и перетренированность - это симптомы невроза, который характеризуется наличием соматических и вегетативных нарушений. Невротические реакции обычно возникают при монотонных (однообразных), длительных, многообразных и многоразовых тренировках (2-3 раза в день), приводящих к постоянному эмоциональному напряжению. Переутомление и перетренированность характеризуются ухудшением нервно-психического и физического состояния, снижением спортивной и общей работоспособности. В большинстве случаев переутомление и перетренированность наслаиваются друг на друга, давая симптомокомплекс нарушений деятельности организма.Переутомление проявляется прежде всего в ухудшении спортивной работоспособности, прекращении роста достижений, несмотря на интенсивные тренировки. Ухудшаются общая работоспособность, сон, усиливаются потливость при выполнении физической нагрузки, сердцебиение (тахикардия), повышается содержание в крови мочевины, нередко имеют место изменения на ЭКГ, снижатся пневмотонометрический показатель, отражающий функцию дыхательной мускулатуры, ЖЕЛ, и другие показатели. Переутомление нарушает слаженность взаимодействия между корой головного мозга, нижележащими отделами нервной системы и внутренними органами. Перетренированность развивается при систематическом предъявлении спортсмену очень сложных двигательных и такических заданий, сочетающихся с большими физическими нагрузками и недостаточным отдыхом. При перетренированности тмечаются повышенная возбудимость, неустойчивость настроения, нежелание тренироваться, вялость. Преобладание процессов торможения, в свою очередь, замедляет восстановительные роцессы. Ухудшение спортивных достижений и снижение портивной работоспособности - основной симптом перетренированности. Спортсмены высокой квалификации постоянно тренируются на фоне хронического утомления, поэтому часто возникают травмы и обостряются заболевания ОДА.Необходимы постоянный врачебный контроль за функциональным состоянием спортсмена, выявление первых (начальных) признаков переутомления. Особо контролируются состояние здоровья (артериальное давление, частота сердечных сокращений, аппетит, потливость при выполнении физической нагрузки, сон и др.), функциональное состояние (биохимические и инструментальный методы исследования) на фоне проводимых интенсивных, объемных тренировочных нагрузок. Ортоклиностатическая проба, биохимические показатели (особенно лактат, мочевина в крови) являются первыми признаками переутомления, и если не внести коррективы в тренировочный процесс, то возникают более серьезные морфофункциональные изменения в тканях ОДА, сердечной мышце и других органах и системах.Адаптация. Адаптативные процессы в тренировке.Работоспособность при постоянном объеме тренировки существенно возрастает уже в начальном периоде. В дальнейшем работоспособность повышается еще в некоторой степени, пока не достигнет стабильного устойчивого уровня (плато) - предела работоспособности. И дальнейшее повышение работоспособности возможно лишь в том случае, если нарастает объем тренировок. Стабильный уровень, который достигается путем предельного увеличения объема тренировок, отражает максимум работоспособности; продолжение тренировки не дает большего эффекта. Эта временная кривая применима в принципе ко всем формам тренировки. Физиологические сдвиги, вызванные адаптацией в период тренировки, могут изменяться в обратном направлении после ее прекращения.Процессы адаптации, связанные с тренировкой, существенно варьируют в зависимости от ее содержания. Может происходить адаптация скелетных мышц (метаболические изменения или увеличение площади поперечного сечения), сердца или дыхательной системы (увеличение максимальной дыхательной способности) либо нервной системы (внутри- и межмышечная координация). Большая часть этих изменений очень существенна для повышения работоспособности Для того, чтобы оценить степень адаптации, необходимо знать исходное состояние тренированности. Степень адаптации к физической работе имеет индивидуальный характер. У одного и того же человека она зависит от характера и величины (объема) физической нагрузки.Тренировка на выносливость вызывает отчетливые изменения многих физиологических показателей.

Из них наиболее резко выражено увеличение сердечного объема (дилатация сердца) и массы сердца (гипертрофия мускулатуры стенки). У спортсменов, тренирующихся на выносливость, происходит также отчетливое повышение жизненной емкости легких (ЖЕЛ). Главный фактор в работоспособности, требующей выносливости, - это адекватное поступление кислорода в мышцы, которое определяется максимальным сердечным выбросом.

Профилактика переутомленияЭффективное управление учебно-тренировочным процессом невоз-можно без учета влияния доз психических и физических нагрузок на ор-ганизм спортсмена на "короткое" и более "длительное" время. Незнание механизмов адаптационного процесса и особенностей кумулятивного эффекта могут привести спортсменов к таким явлениям, как перенапря-жение, переутомление, перетренированность и др. Для предотвращения этого явления необходимо принять целый ком-плекс мер. В связи с тем, что в возникновении переутомления спортсме-нов (как явления) существенную роль играют психологические и биоло-гические механизмы, предотвращение и лечение его должно быть ком-плексным, включающим методы психотерапии, фармакотерапии, орга-низационные и психологические мероприятия, индивидуальные наблю-дения врача и психолога команды. Вместе с тем, осознавая степень значимости указанных методов, не следует забывать о первом звене в этой цепи. Это участие тренера, роль и значение которого, как человека наиболее близко стоящего к спортсме-ну, первостепенны. Именно тренер, как человек наиболее знающий своих воспитанни-ков, может своевременно заметить особенности в поведении спортсмена, выявить отклонения, мешающие ему показать максимальный результат.(Синельникова, 1984). Заметив изменения нервно-психического состояния тренер имеет возможность поддержать и ободрить спортсмена в такой нужный для не-го момент. Факт неудачного выступления, бой, проигранный ввиду явно- го преимущества соперника, и другое всегда является стрессом для спортсмена (и для тренера), вызывает отрицательные эмоции. Важно, чтобы в это время спортсмен не был один. В своих исследованиях Неnschen (1992) предлагает систему мер для тренеров по снижению уровня послесоревновательного стресса. Способы снижения уровня послесоревновательного стресса у спортсменов (рекомендации для тренеров)

1. Обеспечение положительной (поддерживающей) атмосферы сразу же после соревнования.

2. Концентрация внимания на эмоциональном состоянии спортсменов, а не на собственном.

3. Стремление находиться после соревнования вместе с командой.

4. Обеспечение реальной оценки действий каждого спортсмена.

5. Беседа со всеми членами команды, даже с теми, кто не принимал участия в соревновании.

6. Обеспечение совместной деятельности всех членов команды после матча, боя, соревнования (например, ужин всей командой, поход в кино и т. п.).

7. Изолируйте спортсменов после соревнования от родителей и друзей.

8. Не позволяйте членам команды восхищаться своим успехом или впадать в депрессию из-за проигрыша.

9. Начните психологическую подготовку к поединку с очередным соперником на следующем же тренировочном занятии. При необходимости тренер может способствовать преодолению или смягчению проявлений болезненного состояния воспитанника — ис-пользовать в качестве основного лечения постановку перед ним реаль-ных задач в достижении конкретной и посильной цели. Чрезвычайно важно, чтобы наряду с проведением учебно-тренировочного процесса тренер уделял должное внимание воспитанию личности спортсмена, коррекции имеющихся у него отклонений. Прежде всего, важно вырабо-тать у спортсмена умение адекватно реагировать на любые жизненные и спортивные ситуации, особенно неудачи. В первую очередь, необходимо воспитать у него бойцовские качества, так как именно они позволяют мо-билизоваться на достижение максимального спортивного результата. Особенно важна разумная тактика тренера перед соревнованием и в мо-мент секундирования между раундами. Тренер должен помнить, что его эмоции, неуверенность, переживания передаются ученику. Настройка на бой и построение тактического плана боя должны быть четкими и лако-ничными, с учетом собственных достоинств и недостатков соперника. Замечания и указания должны быть краткими и информативными (по-нятными). Не следует давать ученику много советов между раундами и нервничать самому. Особенно важно поведение тренера после соревно-ваний. Рациональный подход, анализ допущенных ошибок и перспекти-вы их устранений позволят спортсмену избежать нервного срыва (осо-бенно при неудачно проведенном старте). С другой стороны, нужно нау-чить спортсмена не переоценивать свой успех. "Звездная болезнь", игно-рирование рекомендаций тренера и врача, как правило, очень быстро приводят к серии неудач, что также способствует развитию невроза. Особое внимание оказывает вопрос организации быта и отдыха спортсменов в условиях тренировочных сборов и, особенно, в период от-ветственных соревнований. Направляющая роль тренера должна проя-виться в разумном руководстве, организации активного отдыха спорт-смена, в умении отвлечь его от навязчивых, подчас изнуряющих, мыслей о предстоящих соревнованиях. При этом в равной степени вредны пози-ции как полного отказа от всех радостей жизни, так и система предостав-ления спортсмену полной свободы действия, так как не все спортсмены умеют правилъно пользоваться свободным режимом. Важная роль в предупреждении переутомления принадлежит пра-вильной организации тренировочного процесса. Обязательным условием его должна быть индивидуализация выполняемых нагрузок с учетом функциональных возможностей спортсмена в каждый конкретный отре-зок времени. При этом необходимо принимать во внимание и физиологические особенности, обусловленные возрастом. В условиях современной системы подготовки, с использованием больших по объему и интенсивности нагрузок и применением 2—3 тре-нировок в течение дня, чрезвычайно болъшое значение имеет система восстановительных мероприятий. Эффективность последней будет вы-сока лишь в том случае, если она будет комплексной и включать педаго-гические, медико-биологические и психологические средства (Готовцев, Дубровский, 1981).В качестве профилактики и снижения психологического напряжения на спортсменов Уэнберг, Гоулд (1997) предлагают предпринять следую-щие меры: 1. Определение краткосрочных соревнователъных и тренировочных целей. Это не только обеспечивает обратную связь, свидетельствующую о том, что спортсмен находится на верном пути, но и повышает долго-срочную мотивацию. 2. Общение. Тренерам, спортсменам, судъям, руководителям команд рекомендуется делиться своими чувствами с коллегами, искать у них со-циальную поддержку. Когда вы делитесь отрицательными чувствами со своими коллегами, те могут помочь вам найти разумное решение возник-шей у вас проблемы. 3. Использование "тайм-аутов". Очень важно для обеспечения пси-хического и физического благополучия брать "тайм-аут", то есть отды-хать от работы и других нагрузок. Миф о том, что чем больше спортсмен тренируется, тем лучше, все еще распространен в мире спорта. Вместе с тем, ежедневная тренировка и соревновательная деятельность ведет к психическому и физическому утомлению. Снижение объема тренировоч-ных нагрузок, а также интенсивность физических упражнений способ-ствует психическому здоровью.

4. Овладение умениями и навыками саморегуляции (релаксация, идео-моторные акты, определение целей и положительная внутренняя речь) значительно снижает уровень стресса, ведущего к "перегоранию". Перетре-нированность спортсменов очень часто происходит за счет личной жизни. Определяя реальные цели, спортсмен находит время и для спорта, и для личной жизни, что способствует предупреждению "перегорания".

5. Сохранепие положителъноп точки зренш. Найдите людей (ими могут быть коллеги), которые могут обеспечитъ социальную поддержку и, следовательно, помогут сохранить положительную точку зрения отно-сительно ваших действий.

6. Контролъ последователъных эмоций. Болъшинство тренеров и спортсменов знают, что необходимо контролировать соревновательное чувство тревожности и напряжения, но мало кто обращает внимание на свои эмоции после соревнований. Эмоции очень часто усиливаются и на-ходят выражение то ли в депрессии, то ли в излишней эмоциональности.

7. Поддержагше высокой спортивной формы. Хронический стресс оказывает воздействие на организм человека, потому очень важно под-держивать высокую спортивную форму с помощью физических упраж-нений и рациональной диеты. Неправильное питание, особенно после соревнований, увеличение массы тела отрицательно влияют на уровень самооценки и способствуют развитию синдрома "перегорания" и "пере-утомления".