
- •1 Направления искусственного интеллекта и понятие иис – 2 ч. [1; 2; 9]
- •1.1 Основные направления искусственного интеллекта и их характеристика. (Гаврилова)
- •1.1.1 Основные направления искусственного интеллекта и их характеристика. (Андрейчикова)
- •1.2 Состояние работ в области экспертных систем и направлениям искусственного интеллекта. (Попов)
- •1.3 Понятие интеллектуальной информационной системы (иис). (Андрейчикова)
- •1.5 Классификация иис. (Андрейчикова)
- •2 Понятие экспертных систем. – 2 ч. [1; 2; 3; 9]
- •2.1 2.2 2.3 Экспертные системы (эс). Назначение экспертных систем. Формальные основы экспертных систем. (Попов)
- •Назначение экспертных систем
- •Формальные основы экспертных систем
- •3 Архитектура экспертных систем и этапы разработки - 2 ч. [2; 8; 9]
- •3.3 Этапы разработки экспертных систем. (Попов)
- •5 Методы и модели представления знаний. (Попов)
- •5.1 Формальная логическая модель представления знаний. (Попов)
- •5.2. Семантическая модель представления знаний. (Попов)
- •5.3 Фреймовая модель представления знаний. (Попов)
- •5.4 Продукционная модель представления знаний. (Попов)
- •5.6 Модель представления знаний: “прецеденты”.
- •5.5 Модель доски объявлений для представления знаний.
- •5.7 Гибридные модели представления знаний
- •6 Методы поиска решений в эс
- •7 Понятие и определение нечетких знаний – 2 ч. [3; 14]
- •7.1 Нечеткие знания
- •7.2 Понятие лингвистической переменной, определение ее значения
- •7.3 Понятие нечеткого множества
- •7.4 Определение нечеткого множества (через базовую шкалу и функцию принадлежности)
- •7.5 Понятие функции принадлежности
- •7.6 Операции с нечеткими знаниями
- •8 Стратегии получения знаний - 2 ч. [3]
- •8.1 Извлечение знаний из данных, приобретение знаний, формирование знаний. Теоретические аспекты извлечения знаний.
- •Теоретические аспекты извлечения знаний
- •Психологический аспект извлечения знаний
- •Лингвистический аспект извлечения знаний
- •Гносеологический аспект извлечения знаний
- •Теоретические аспекты структурирования знаний
- •Историческая справка
- •Иерархический подход
- •Традиционные методологии структурирования
- •Объектно-структурный подход (осп)
- •9 Проектирование экспертных систем - 2ч. [1; 3]
- •9.1 Этапы проектирования экспертной системы: идентификация, концептуализация, формализация, реализация, тестирование, опытная эксплуатация.
- •9.4 Технология проектирования и разработки промышленных эс.
- •9.5 Характеристика этапов разработки эс.
- •9.6 Технология быстрого прототипирования эс.
- •9.7 Характеристика стадий разработки прототипа эс.
- •10 Понятие нейроинформатики, история развития
- •Задача обучения нейронной сети на примерах.
- •12.1 Интерфейс вывода нейросетевого блока
- •12.2 Интерпретатор нейросетевого блока
- •12.3 Блок «Учитель» нейроимитатора
- •12.4 Блок «Оценка»
- •4.3.8. Конструктор нейронной сети
- •12.7 Блок «Констрастер»
- •4.3.9. Контрастер нейронной сети
- •42. Схема работы интеллектуального компонента прогнозирования временных рядов показателей.
- •44. Персептрон Розенблатта.
- •46.Карта самоорганизации Кохонена.
- •45 Многослойный перцептрон и его обучение
44. Персептрон Розенблатта.
Одной из первых искусственных сетей, способных к перцепции (восприятию) и формированию реакции на воспринятый стимул, явился PERCEPTRON Розенблатта (F.Rosenblatt, 1957). Персептрон рассматривался его автором не как конкретное техническое вычислительное устройство, а как модель работы мозга.
Простейший классический персептрон содержит нейроподобные элементы трех типов (см. Рис. 4.1):
1)S-элементы формируют сетчатку сенсорных клеток, принимающих двоичные сигналы от внешнего мира.
2)Далее сигналы поступают в слой ассоциативных или A-элементов (для упрощения изображения часть связей от входных S-клеток к A-клеткам не показана). Только ассоциативные элементы, представляющие собой формальные нейроны, выполняют нелинейную обработку информации и имеют изменяемые веса связей.
3)R-элементы с фиксированными весами формируют сигнал реакции персептрона на входной стимул.
Розенблатт называл такую нейронную сеть трехслойной, однако по современной терминологии представленная сеть обычно называется однослойной, так как имеет только один слой нейропроцессорных элементов. Однослойный персептрон характеризуется матрицей синаптических связей W от S- к A-элементам. Элемент матрицы Wij отвечает связи, ведущей от i-го S-элемента к j-му A-элементу.
В работах Розенблатта был сделано заключение о том, что нейронная сеть рассмотренной архитектуры будет способна к воспроизведению любой логической функции, однако, как было показано позднее М.Минским и С.Пейпертом (M.Minsky, S.Papert, 1969), этот вывод оказался неточным. Были выявлены принципиальные неустранимые ограничения однослойных персептронов, и в последствии стал в основном рассматриваться многослойный вариант персептрона, в котором имеются несколько слоев процессорных элементов.
С сегодняшних позиций однослойный персептрон представляет скорее исторический интерес, однако на его примере могут быть изучены основные понятия и простые алгоритмы обучения нейронных сетей.
Теорема об обучении персептрона.
Обучение сети состоит в подстройке весовых коэффициентов каждого нейрона. Пусть имеется набор пар векторов (xa,ya), a=1..p, называемый обучающей выборкой. Будем называть нейронную сеть обученной на данной обучающей выборке, если при подаче на входы сети каждого вектора xa на выходах всякий раз получается соответсвующий вектор ya..
Предложенный Ф.Розенблаттом метод обучения состоит в итерационной подстройке матрицы весов, последовательно уменьшающей ошибку в выходных векторах. Алгоритм включает несколько шагов:
Шаг 0. |
Начальные значения весов всех нейронов W(t=0) полагаются случайными. |
Шаг 1. |
Сети предъявляется входной образ xa, в результате формируется выходной образ ya ya |
Шаг 2. |
Вычисляется
вектор ошибки
|
Шаг 3. |
Вектор весов
модифицируется по следующей формуле:
|
Шаг 4. |
Шаги 1-3 повторяются для всех обучающих векторов. Один цикл последовательного предъявления всей выборки называется эпохой. Обучение завершается по истечении нескольких эпох, а) когда итерации сойдутся, т.е. вектор весов перестает измеяться, или б) когда полная просуммированная по всем векторам абсолютная ошибка станет меньше некоторого малого значения. |
Используемая на шаге 3 формула учитывает следующие обстоятельства: а) модифицируются только компоненты матрицы весов, отвечающие ненулевым значениям входов; б) знак приращения веса соответствует знаку ошибки, т.е. положительная ощибка (>0, значение выхода меньше требуемого) проводит к усилению связи; в) обучение каждого нейрона происходит независимо от обучения остальных нейронов, что соответсвует важному с биологической точки зрения, принципу локальности обучения.
Данный метод обучения был назван Ф.Розенблаттом “методом коррекции с обратной передачей сигнала ошибки”. Позднее более широко стало известно название “-правило”. Представленный алгоритм относится к широкому классу алгоритмов обучения с учителем, поскольку известны как входные вектора, так и требуемые значения выходных векторов (имеется учитель, способный оценить правильность ответа ученика).
Доказанная Розенблаттом теорема о сходимости обучения по -правилу говорит о том, что персептрон способен обучится любому обучающему набору, который он способен представить. Ниже мы более подробно обсудим возможности персептрона по представлению информации.