
- •1 Направления искусственного интеллекта и понятие иис – 2 ч. [1; 2; 9]
- •1.1 Основные направления искусственного интеллекта и их характеристика. (Гаврилова)
- •1.1.1 Основные направления искусственного интеллекта и их характеристика. (Андрейчикова)
- •1.2 Состояние работ в области экспертных систем и направлениям искусственного интеллекта. (Попов)
- •1.3 Понятие интеллектуальной информационной системы (иис). (Андрейчикова)
- •1.5 Классификация иис. (Андрейчикова)
- •2 Понятие экспертных систем. – 2 ч. [1; 2; 3; 9]
- •2.1 2.2 2.3 Экспертные системы (эс). Назначение экспертных систем. Формальные основы экспертных систем. (Попов)
- •Назначение экспертных систем
- •Формальные основы экспертных систем
- •3 Архитектура экспертных систем и этапы разработки - 2 ч. [2; 8; 9]
- •3.3 Этапы разработки экспертных систем. (Попов)
- •5 Методы и модели представления знаний. (Попов)
- •5.1 Формальная логическая модель представления знаний. (Попов)
- •5.2. Семантическая модель представления знаний. (Попов)
- •5.3 Фреймовая модель представления знаний. (Попов)
- •5.4 Продукционная модель представления знаний. (Попов)
- •5.6 Модель представления знаний: “прецеденты”.
- •5.5 Модель доски объявлений для представления знаний.
- •5.7 Гибридные модели представления знаний
- •6 Методы поиска решений в эс
- •7 Понятие и определение нечетких знаний – 2 ч. [3; 14]
- •7.1 Нечеткие знания
- •7.2 Понятие лингвистической переменной, определение ее значения
- •7.3 Понятие нечеткого множества
- •7.4 Определение нечеткого множества (через базовую шкалу и функцию принадлежности)
- •7.5 Понятие функции принадлежности
- •7.6 Операции с нечеткими знаниями
- •8 Стратегии получения знаний - 2 ч. [3]
- •8.1 Извлечение знаний из данных, приобретение знаний, формирование знаний. Теоретические аспекты извлечения знаний.
- •Теоретические аспекты извлечения знаний
- •Психологический аспект извлечения знаний
- •Лингвистический аспект извлечения знаний
- •Гносеологический аспект извлечения знаний
- •Теоретические аспекты структурирования знаний
- •Историческая справка
- •Иерархический подход
- •Традиционные методологии структурирования
- •Объектно-структурный подход (осп)
- •9 Проектирование экспертных систем - 2ч. [1; 3]
- •9.1 Этапы проектирования экспертной системы: идентификация, концептуализация, формализация, реализация, тестирование, опытная эксплуатация.
- •9.4 Технология проектирования и разработки промышленных эс.
- •9.5 Характеристика этапов разработки эс.
- •9.6 Технология быстрого прототипирования эс.
- •9.7 Характеристика стадий разработки прототипа эс.
- •10 Понятие нейроинформатики, история развития
- •Задача обучения нейронной сети на примерах.
- •12.1 Интерфейс вывода нейросетевого блока
- •12.2 Интерпретатор нейросетевого блока
- •12.3 Блок «Учитель» нейроимитатора
- •12.4 Блок «Оценка»
- •4.3.8. Конструктор нейронной сети
- •12.7 Блок «Констрастер»
- •4.3.9. Контрастер нейронной сети
- •42. Схема работы интеллектуального компонента прогнозирования временных рядов показателей.
- •44. Персептрон Розенблатта.
- •46.Карта самоорганизации Кохонена.
- •45 Многослойный перцептрон и его обучение
Какую работу нужно написать?
7 Понятие и определение нечетких знаний – 2 ч. [3; 14]
7.1 Нечеткие знания
При попытке формализовать человеческие знания исследователи вскоре столкнулись с проблемой, затруднявшей использование традиционного математического аппарата для их описания. Существует целый класс описаний, оперирующих качественными характеристиками объектов (много, мало, сильный, очень сильный и т. п.). Эти характеристики обычно размыты и не могут быть однозначно интерпретированы, однако содержат важную информацию (например, "Одним из возможных признаков гриппа является высокая температура").
Кроме того, в задачах, решаемых интеллектуальными системами, часто приходится пользоваться неточными знаниями, которые не могут быть интерпретированы как полностью истинные или ложные (логические true/false или 0/1). Существуют знания, достоверность которых выражается некоторой промежуточной цифрой, например 0.7.
Как, не разрушая свойства размытости и неточности, представлять подобные знания формально? Для разрешения таких проблем в начале 70-х американский математик Лотфи Заде предложил формальный аппарат нечеткой (fuzzy) алгебры и нечеткой логики [Заде, 1972]. Позднее это направление получило широкое распространение [Орловский, 1981; Аверкин и др., 1986; Яшин, 1990] и положило начало одной из ветвей ИИ под названием - мягкие вычисления (soft computing).
7.2 Понятие лингвистической переменной, определение ее значения
Л. Заде ввел одно из главных понятий в нечеткой логике - понятие лингвистической переменной.
Лингвистическая переменная (ЛП) - это переменная, значение которой определяется набором вербальных (то есть словесных) характеристик некоторого свойства.
Например, ЛП "рост" определяется через набор {карликовый, низкий, средний, высокий, очень высокий}.
7.3 Понятие нечеткого множества
Значения лингвистической переменной (ЛП) определяются через так называемые нечеткие множества (НМ), которые в свою очередь определены на некотором базовом наборе значений или базовой числовой шкале, имеющей размерность. Каждое значение ЛП определяется как нечеткое множество (например, НМ "низкий рост").
7.4 Определение нечеткого множества (через базовую шкалу и функцию принадлежности)
Нечеткое множество определяется через некоторую базовую шкалу В и функцию принадлежности НМ - μ(х), х∈В, принимающую значения на интервале [0...1]. Таким образом, нечеткое множество В - это совокупность пар вида (х, μ(х)), где х∈В. Часто встречается и такая запись:
n |
Σ |
i=1 |
xi |
μ(xi) |
B =
где хi - i-e значение базовой шкалы.
7.5 Понятие функции принадлежности
Функция принадлежности определяет субъективную степень уверенности эксперта в том, что данное конкретное значение базовой шкалы соответствует определяемому НМ. Эту функцию не стоит путать с вероятностью, носящей объективный характер и подчиняющейся другим математическим зависимостям. Например, для двух экспертов определение НМ "высокая" для ЛП "цена автомобиля" в условных единицах может существенно отличаться в зависимости от их социального и финансового положения.
"Высокая_цена_автомобиля_1" = {50000/1 + 25000/0.8 + 10000/0.6 + 5000/0.4}.
"Высокая_цена_автомобиля_2" = {25000/1 + 10000/0.8 + 5000/0.7 + 3000/0.4}
Пример 1.
Пусть перед нами стоит задача интерпретации значений ЛП "возрасти", таких как "молодой" возраст, "преклонный" возраст или "переходный" возраст. Определим "возраст" как ЛП (рис. 1.6). Тогда "молодой", "преклонный", "переходный" будут значениями этой лингвистической переменной. Более полно, базовый набор значений ЛП "возраст" следующий:
В = {младенческий, детский, юный, молодой, зрелый, преклонный, старческий}.
Рис.
1. Лингвистическая переменная "возраст"
и нечеткие множества,
определяющие
ее значения
Для ЛП "возраст" базовая шкала - это числовая шкала от 0 до 120, обозначающая количество прожитых лет, а функция принадлежности определяет, насколько мы уверены в том, что данное количество лет можно отнести к данной категории возраста. На рис. 2. отражено, как одни и те же значения базовой шкалы могут участвовать в определении различных НМ.
Рис.
2. Формирование нечетких множеств
Например, определить значение НМ "младенческий возраст" можно так:
"младенческий возраст" = { 0.5/1+1/0.9+2/0.8+3/0.7+4/0.6+5/0.3+10/0.1}
Рисунок 3. иллюстрирует оценку НМ неким усредненным экспертом, который ребенка до полугода с высокой степенью уверенности относит к младенцам (m = 1). Дети до четырех лет причисляются к младенцам тоже, но с меньшей степенью уверенности (0.5<m<0.9), а в десять лет ребенка называют так только в очень редких случаях - к примеру, для девяностолетней бабушки и 15 лет может считаться младенчеством. Таким образом, нечеткие множества позволяют при определении понятия учитывать субъективные мнения отдельных индивидуумов.
Рис.
3. График функции принадлежности нечеткому
множеству "младенческий возраст"