
- •1 Направления искусственного интеллекта и понятие иис – 2 ч. [1; 2; 9]
- •1.1 Основные направления искусственного интеллекта и их характеристика. (Гаврилова)
- •1.1.1 Основные направления искусственного интеллекта и их характеристика. (Андрейчикова)
- •1.2 Состояние работ в области экспертных систем и направлениям искусственного интеллекта. (Попов)
- •1.3 Понятие интеллектуальной информационной системы (иис). (Андрейчикова)
- •1.5 Классификация иис. (Андрейчикова)
- •2 Понятие экспертных систем. – 2 ч. [1; 2; 3; 9]
- •2.1 2.2 2.3 Экспертные системы (эс). Назначение экспертных систем. Формальные основы экспертных систем. (Попов)
- •Назначение экспертных систем
- •Формальные основы экспертных систем
- •3 Архитектура экспертных систем и этапы разработки - 2 ч. [2; 8; 9]
- •3.3 Этапы разработки экспертных систем. (Попов)
- •5 Методы и модели представления знаний. (Попов)
- •5.1 Формальная логическая модель представления знаний. (Попов)
- •5.2. Семантическая модель представления знаний. (Попов)
- •5.3 Фреймовая модель представления знаний. (Попов)
- •5.4 Продукционная модель представления знаний. (Попов)
- •5.6 Модель представления знаний: “прецеденты”.
- •5.5 Модель доски объявлений для представления знаний.
- •5.7 Гибридные модели представления знаний
- •6 Методы поиска решений в эс
- •7 Понятие и определение нечетких знаний – 2 ч. [3; 14]
- •7.1 Нечеткие знания
- •7.2 Понятие лингвистической переменной, определение ее значения
- •7.3 Понятие нечеткого множества
- •7.4 Определение нечеткого множества (через базовую шкалу и функцию принадлежности)
- •7.5 Понятие функции принадлежности
- •7.6 Операции с нечеткими знаниями
- •8 Стратегии получения знаний - 2 ч. [3]
- •8.1 Извлечение знаний из данных, приобретение знаний, формирование знаний. Теоретические аспекты извлечения знаний.
- •Теоретические аспекты извлечения знаний
- •Психологический аспект извлечения знаний
- •Лингвистический аспект извлечения знаний
- •Гносеологический аспект извлечения знаний
- •Теоретические аспекты структурирования знаний
- •Историческая справка
- •Иерархический подход
- •Традиционные методологии структурирования
- •Объектно-структурный подход (осп)
- •9 Проектирование экспертных систем - 2ч. [1; 3]
- •9.1 Этапы проектирования экспертной системы: идентификация, концептуализация, формализация, реализация, тестирование, опытная эксплуатация.
- •9.4 Технология проектирования и разработки промышленных эс.
- •9.5 Характеристика этапов разработки эс.
- •9.6 Технология быстрого прототипирования эс.
- •9.7 Характеристика стадий разработки прототипа эс.
- •10 Понятие нейроинформатики, история развития
- •Задача обучения нейронной сети на примерах.
- •12.1 Интерфейс вывода нейросетевого блока
- •12.2 Интерпретатор нейросетевого блока
- •12.3 Блок «Учитель» нейроимитатора
- •12.4 Блок «Оценка»
- •4.3.8. Конструктор нейронной сети
- •12.7 Блок «Констрастер»
- •4.3.9. Контрастер нейронной сети
- •42. Схема работы интеллектуального компонента прогнозирования временных рядов показателей.
- •44. Персептрон Розенблатта.
- •46.Карта самоорганизации Кохонена.
- •45 Многослойный перцептрон и его обучение
5.3 Фреймовая модель представления знаний. (Попов)
Термин фрейм (от английского frame, что означает "каркас" или "рамка") был предложен Маренном Минским [Минский, 1979], одним из пионеров ИИ, в 70-е годы для обозначения структуры знаний для восприятия пространственных сцен. Эта модель, как и семантическая сеть, имеет глубокое психологическое обоснование.
Фрейм - это абстрактный образ для представления некоего стереотипа восприятия. В психологии и философии известно понятие абстрактного образа. Например, произнесение вслух слова "комната" порождает у слушающих образ комнаты: "жилое помещение с четырьмя стенами, полом, потолком, окнами и дверью, площадью 6-20 м2". Из этого описания ничего нельзя убрать (например, убрав окна, мы получим уже чулан, а не комнату), но в нем есть "дырки" или "слоты" - это незаполненные значения некоторых атрибутов - например, количество окон, цвет стен, высота потолка, покрытие пола и др.
В теории фреймов такой образ комнаты называется фреймом комнаты. Фреймом также называется и формализованная модель для отображения образа.
Различают фреймы-образцы, или прототипы, хранящиеся в базе знаний, и фреймы-экземпляры, которые создаются для отображения реальных фактических ситуаций на основе поступающих данных. Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний о мире через:
фреймы-структуры, использующиеся для обозначения объектов и понятий (заем, залог, вексель);
фреймы-роли (менеджер, кассир, клиент);
фреймы-сценарии (банкротство, собрание акционеров, празднование именин);
фреймы-ситуации (тревога, авария, рабочий режим устройства) и др.
Традиционно структура фрейма может быть представлена как список свойств:
(ИМЯ ФРЕЙМА:
(имя 1-го слота: значение 1-го слота),
(имя 2-го слота: значение 2-го слота),
∙ ∙ ∙
(имя N-го слота: значение N-го слота)).
Ту же запись можно представить в виде таблицы, дополнив ее двумя столбцами.
Таблица 1.1. Структура фрейма
Имя фрейма |
|||
Имя слота |
Значение слота |
Способ получения значения |
Присоединенная процедура |
|
|
|
|
|
|
|
|
|
|
|
|
В таблице дополнительные столбцы предназначены для описания способа получения слотом его значения и возможного присоединения к тому или иному слоту специальных процедур, что допускается в теории фреймов. В качестве значения слота может выступать имя другого фрейма, так образуются сети фреймов.
Существует несколько способов получения слотом значений во фрейме-экземпляре:
по умолчанию от фрейма-образца (Default-значение);
через наследование свойств от фрейма, указанного в слоте АКО;
по формуле, указанной в слоте;
через присоединенную процедуру;
явно из диалога с пользователем;
из базы данных.
Важнейшим свойством теории фреймов является заимствование из теории семантических сетей - так называемое наследование свойств. И во фреймах, и в семантических сетях наследование происходит по АКО-связям (A-Kind-Of = это). Слот АКО указывает на фрейм более высокого уровня иерархии, откуда неявно наследуются, то есть переносятся, значения аналогичных слотов.
Пример 1.4
Например, в сети фреймов на рис. 1.2 понятие "ученик" наследует свойства фреймов "ребенок" и "человек", которые находятся на более высоком уровне иерархии. Так, на вопрос "любят ли ученики сладкое" следует ответ "да", так как этим свойством обладают все дети, что указано во фрейме "ребенок". Наследование свойств может быть частичным, так как возраст для учеников не наследуется из фрейма "ребенок", поскольку указан явно в своем собственном фрейме.
Основным преимуществом фреймов как модели представления знаний является то, что она отражает концептуальную основу организации памяти человека [Шенк, Хантер, 1987], а также ее гибкость и наглядность.
Специальные языки представления знаний в сетях фреймов FRL (Frame Representation Language) [Байдун, Бунин, 1990], KRL (Knowledge Representation Language) [Уотермен, 1989], фреймовая "оболочка" Kappa [Стрельников, Борисов, 1997] и другие программные средства позволяют эффективно строить промышленные ЭС. Широко известны такие фрейм-ориентированные экспертные системы, как ANALYST, МОДИС, TRISTAN, ALTERID [Ковригин, Перфильев, 1988; Николов, 1988; Sisodia, Warkentin, 1992].