 
        
        - •1 Направления искусственного интеллекта и понятие иис – 2 ч. [1; 2; 9]
- •1.1 Основные направления искусственного интеллекта и их характеристика. (Гаврилова)
- •1.1.1 Основные направления искусственного интеллекта и их характеристика. (Андрейчикова)
- •1.2 Состояние работ в области экспертных систем и направлениям искусственного интеллекта. (Попов)
- •1.3 Понятие интеллектуальной информационной системы (иис). (Андрейчикова)
- •1.5 Классификация иис. (Андрейчикова)
- •2 Понятие экспертных систем. – 2 ч. [1; 2; 3; 9]
- •2.1 2.2 2.3 Экспертные системы (эс). Назначение экспертных систем. Формальные основы экспертных систем. (Попов)
- •Назначение экспертных систем
- •Формальные основы экспертных систем
- •3 Архитектура экспертных систем и этапы разработки - 2 ч. [2; 8; 9]
- •3.3 Этапы разработки экспертных систем. (Попов)
- •5 Методы и модели представления знаний. (Попов)
- •5.1 Формальная логическая модель представления знаний. (Попов)
- •5.2. Семантическая модель представления знаний. (Попов)
- •5.3 Фреймовая модель представления знаний. (Попов)
- •5.4 Продукционная модель представления знаний. (Попов)
- •5.6 Модель представления знаний: “прецеденты”.
- •5.5 Модель доски объявлений для представления знаний.
- •5.7 Гибридные модели представления знаний
- •6 Методы поиска решений в эс
- •7 Понятие и определение нечетких знаний – 2 ч. [3; 14]
- •7.1 Нечеткие знания
- •7.2 Понятие лингвистической переменной, определение ее значения
- •7.3 Понятие нечеткого множества
- •7.4 Определение нечеткого множества (через базовую шкалу и функцию принадлежности)
- •7.5 Понятие функции принадлежности
- •7.6 Операции с нечеткими знаниями
- •8 Стратегии получения знаний - 2 ч. [3]
- •8.1 Извлечение знаний из данных, приобретение знаний, формирование знаний. Теоретические аспекты извлечения знаний.
- •Теоретические аспекты извлечения знаний
- •Психологический аспект извлечения знаний
- •Лингвистический аспект извлечения знаний
- •Гносеологический аспект извлечения знаний
- •Теоретические аспекты структурирования знаний
- •Историческая справка
- •Иерархический подход
- •Традиционные методологии структурирования
- •Объектно-структурный подход (осп)
- •9 Проектирование экспертных систем - 2ч. [1; 3]
- •9.1 Этапы проектирования экспертной системы: идентификация, концептуализация, формализация, реализация, тестирование, опытная эксплуатация.
- •9.4 Технология проектирования и разработки промышленных эс.
- •9.5 Характеристика этапов разработки эс.
- •9.6 Технология быстрого прототипирования эс.
- •9.7 Характеристика стадий разработки прототипа эс.
- •10 Понятие нейроинформатики, история развития
- •Задача обучения нейронной сети на примерах.
- •12.1 Интерфейс вывода нейросетевого блока
- •12.2 Интерпретатор нейросетевого блока
- •12.3 Блок «Учитель» нейроимитатора
- •12.4 Блок «Оценка»
- •4.3.8. Конструктор нейронной сети
- •12.7 Блок «Констрастер»
- •4.3.9. Контрастер нейронной сети
- •42. Схема работы интеллектуального компонента прогнозирования временных рядов показателей.
- •44. Персептрон Розенблатта.
- •46.Карта самоорганизации Кохонена.
- •45 Многослойный перцептрон и его обучение
5 Методы и модели представления знаний. (Попов)
Модели представления знаний
Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:
- продукционные модели; 
- семантические сети; 
- фреймы; 
- формальные логические модели. 
5.1 Формальная логическая модель представления знаний. (Попов)
Традиционно в представлении знаний выделяют формальные логические модели, основанные на классическом исчислении предикатов 1-го порядка, когда предметная область или задача описывается в виде набора аксиом. Мы же опустим описание этих моделей по следующим причинам. Исчисление предикатов 1-го порядка в промышленных экспертных системах практически не используется. Эта логическая модель применима в основном в исследовательских "игрушечных" системах, так как предъявляет очень высокие требования и ограничения к предметной области.
5.2. Семантическая модель представления знаний. (Попов)
Термин семантическая означает "смысловая", а сама семантика - это наука, устанавливающая отношения между символами и объектами, которые они обозначают, то есть наука, определяющая смысл знаков.
Семантическая сеть - это ориентированный граф, вершины которого - понятия, а дуги - отношения между ними.
В качестве понятий обычно выступают абстрактные или конкретные объекты, а отношения - это связи типа: "это" ("АКО - A-Kind-Of", "is"), "имеет частью" ("has part"), "принадлежит", "любит". Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:
- класс - элемент класса (цветок - роза); 
- свойство - значение (цвет - желтый); 
- пример элемента класса (роза - чайная). 
Можно предложить несколько классификаций семантических сетей, связанных с типами отношений между понятиями.
По количеству типов отношений:
- Однородные (с единственным типом отношений). 
- Неоднородные (с различными типами отношений). 
По типам отношений:
- Бинарные (в которых отношения связывают два объекта). 
- N-арные (в которых есть специальные отношения, связывающие более двух понятий). 
Наиболее часто в семантических сетях используются следующие отношения:
- связи типа "часть - целое" ("класс - подкласс", "элемент -множество", и т. п.); 
- функциональные связи (определяемые обычно глаголами "производит", "влияет"...); 
- количественные (больше, меньше, равно...); 
- пространственные (далеко от, близко от, за, под, над...); 
- временные (раньше, позже, в течение...); 
- атрибутивные связи (иметь свойство, иметь значение); 
- логические связи (И, ИЛИ, НЕ); 
- лингвистические связи и др. 
Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, отражающей поставленный запрос к базе.
Пример 1.3
На рис. 1.1 изображена семантическая сеть. В качестве вершин тут выступают понятия "человек", "т. Иванов", "Волга", "автомобиль", "вид транспорта" и "двигатель".
 Рис.
1.1. Семантическая сеть
Рис.
1.1. Семантическая сеть 
Данная модель представления знаний была предложена американским психологом Куиллианом. Основным ее преимуществом является то, что она более других соответствует современным представлениям об организации долговременной памяти человека [Скрэгг, 1983].
Недостатком этой модели является сложность организации процедуры поиска вывода на семантической сети.
Для реализации семантических сетей существуют специальные сетевые языки, например NET [Цейтин, 1985], язык реализации систем SIMER+MIR [Осипов, 1997] и др. Широко известны экспертные системы, использующие семантические сети в качестве языка представления знаний - PROSPECTOR, CASNET, TORUS [Хейес-Рот и др., 1987; Durkin, 1998].
