
- •1. Структурная схема и алгоритм работы простейшей атсэ с временным разделением каналов (аим). Назначение элементов схемы. Почему атсэ с аим не может работать без усилителей в разговорном тракте?
- •2. Структурная схема и алгоритм работы атсэ с временным разделением каналов (аим) и усилителями в абонентских комплектах. Назначение элементов схемы. Какие требования к усилителю в такой схеме?
- •Структурная схема и алгоритм работы атсэ с временным разделением каналов (аим) и усилителем в общем тракте передачи. Назначение элементов схемы. Какие требования к усилителю в такой схеме?
- •4.Группообразование в атсэ с временным разделением каналов (аим). Объяснить, какая часть схемы выполняет функции предварительного искания, а какая – группового.
- •5. Основная идея икм. Какие параметры квантования по амплитуде и по времени приняты в качестве стандартных в телефонии и почему.
- •6. Стандартные цифровые потоки – название, скорость передачи данных, количество канальных интервалов. Объяснить понятие «канальный интервал».
- •7. Способы группообразования в цифровых атс: общий обзор, принципы цифрового группообразования. В каких случаях какой способ применяется?
- •8.Структурная схема простейшей цифровой атс. Объяснить логику работы.
- •9.Объяснить, почему простейшая структурная схема п рименяется только для небольших офисных цифровых атс. Что мешает ее использовать для станций на тысячи номеров?
- •10. Два способа построения блока временной коммутации. Описание логики работы в обоих случаях. Когда какой из них применяется?
- •С последовательной записью и произвольным чтением:
- •С произвольной записью и последовательным чтением.
- •Эквивалентная схема:
- •11.Структурная схема и алгоритм работы блока временной коммутации. Объяснить, как происходит перенос разговора из одного канального интервала в другой «назад» и «вперед».
- •Структурная схема и алгоритм работы блока временной коммутации. Чем ограничена пропускная способность такого коммутационного элемента? Показать на временной диаграмме.
- •13.Структурная схема блока временной коммутации. Как рассчитать объем памяти, необходимый для построения такого блока? От чего он зависит?
- •14. Эквивалентная схема блока временной коммутации (т – элемент), как рассчитываются параметры телефонной нагрузки для блока временной коммутации.
- •15. Структурная схема и алгоритм работы блока пространственной коммутации на базе коммутационной матрицы из логических элементов.
- •16. Структурная схема и алгоритм работы блока пространственной коммутации на мультиплексорах. Привести пример заполнения ячеек для конкретного задания на коммутацию.
- •17.Структурная схема и алгоритм работы блока пространственной коммутации на демультиплексорах. Привести пример заполнения ячеек для конкретного задания на коммутацию
- •18.Для чего нужен „показатель сложности” при расчете схем цифровой коммутации? Показать на примере сравнения схемы пространственной коммутации на мультиплексорах и демультиплексорах.
- •19. Пространственный эквивалент блока пространственной коммутации. Какие формулы можно использовать для расчета параметров телефонной нагрузки такого блока?
- •20.Структурная схема и алгоритм работы блока пространственно-временной коммутации. Привести пример заполнения ячеек для конкретного задания на коммутацию.
- •22.Пространственный эквивалент блока пространственно-временной коммутации. Какие формулы можно использовать для расчета параметров телефонной нагрузки такого блока?
- •23. Анализ процесса коммутационного поля несимметричной структуры, например st поля. Почему несимметричные структуры не применяются при построении коммутационных полей.
- •24. Анализ процесса коммутации поля симметричной структуры, например, s-t-s. Какое преимущество дает использование симметричной структуры?
- •25. 4 Основных принципа построения цифровых коммутационных полей. Кратко охарактеризовать каждый из них.
- •26.Классификация цифровых коммутационных полей: краткое объяснение основных этапов эволюции цкп.
- •27. Цифровые кп 1-го класса: s-t-s. Пример построения и логика работы. Какую временную задержку вносит такое поле? Почему такие поля применялись раньше и не применяются теперь?
- •Эквивалентная схема элемента:
- •2 9.Цифровые коммутационные поля 1-го класса: s-t-s. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая группового искания с одной линией в каждом направлении.
- •Цифровые коммутационные поля 1-го класса: s-t-s. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая группового искания с несколькими линиями в одном направлении.
- •31.Цифровые коммутационные поля 1-го класса с мультиплексорами: Mx-s-t-s-Dmx. Пример построения и логика работы. Объяснить назначение и принцип действия мультиплексоров.
- •32. Цифровые коммутационные поля первого класса: ss-t-ss. Пример построения. Как зависит емкость поля от количества s ступеней.
- •33. Цифровые коммутационные поля 1-го класса: s-s-t-s-s. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая линейного искания.
- •34. Цифровые коммутационные поля 1-го класса: s-s-t-s-s. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая группового искания.
- •35.Пример цифрового коммутационного поля Mx-t-Dmx. Объяснить логику работы. К какому классу цкп относится такое поле?
- •Цифровые коммутационные поля 2-го класса: t-s-t. Пример построения и логика работы. В чем их преимущество по сравнению с полями s-t-s? Какую временную задержку вносит такое поле?
- •37. Цифровые коммутационные поля 2-го класса: t-s-t. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая линейного искания.
- •Цифровые коммутационные поля 2-го класса: t-s-t. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая группового искания с одной линией в каждом направлении.
- •40.Цифровые коммутационные поля 2-го класса с мультиплексорами: Mx-t-s-t-Dmx. Пример построения и логика работы. Объяснить назначение и принцип действия мультиплексоров.
- •Цифровые коммутационные поля 2-го класса: t-s-s-t. Пример построения и логика работы. Почему бывает недостаточно одной s-ступени?
- •Цифровые коммутационные поля 2-го класса: t-s-s-s-s-t. Пример построения и логика работы. Для чего нужно увеличивать количество s-ступеней?
- •43. Цифровые коммутационные поля 3-го класса: s/t-s-s/t. Пример построения и логика работы. В чем преимущество по сравнению с полями t-s-t?
- •44. Цифровые коммутационные поля 3-го класса: s/t-s-s/t. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая линейного искания.
- •45. Цифровые коммутационные поля 3-го класса: s/t-s-s/t. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая группового искания.
- •46.Цифровые коммутационные поля 3-го класса: s/t-s-s-s/t. Как связаны между собой количество s-ступеней и емкость коммутационного поля?
- •47. Цифровые коммутационные поля 4-го класса: s/t-s/t-s/t. Эквивалентная схема, построение вероятностного графа. Какую временную задержку вносит такое поле?
- •48.Схема и логика работы коммутационной структуры t-Mx-Dmx-t. В каких системах она применяется? Какие требования к быстродействию т-звена?
- •49.Схема коммутационной структуры t-Mx-Dmx-t. Эквивалентная схема и вероятностный граф для нее. Логика расчета.
- •50.Схема кольцевой связи нескольких телефонных станций с помощью коммутационных структур t-Mx-Dmx-t. В чем преимущества такой схемы связи?
- •Структурная схема и алгоритм работы простейшей атсэ с временным разделением каналов (аим). Назначение элементов схемы. Почему атсэ с аим не может работать без усилителей в разговорном тракте?
- •Структурная схема и алгоритм работы атсэ с временным разделением каналов (аим) и усилителями в абонентских комплектах. Назначение элементов схемы. Какие требования к усилителю в такой схеме?
26.Классификация цифровых коммутационных полей: краткое объяснение основных этапов эволюции цкп.
Цифровое КП (ЦКП) строится обычно по звеньевому принципу. Звеном ЦКП называют группу ступеней (S-, T-, S/T), реализующих одну и ту же функцию преобразования координат цифрового сигнала. В зависимости от числа звеньев различают двух-, трех- и многозвенные КП.
С учетом симметричности и модульности построения все множество синхронных КП можно разделить на 5 классов. В каждом классе можно выделить базовую структуру и подструктуру, образованные добавлением дополнительных коммутационных элементов с предварительным мультиплексированием и последующим демультиплексированием цифровых групповых трактов.
1. Базовая структура: S*k – T*r – S*k
Особенностью поля является наличие S-ступени в первом и последнем звене, порядок следования T- и S-ступеней внутри поля - произвольно с соблюдением правила симметрии.
2. Базовая структура: T*k – S*r – T*k.
Особенностью поля является наличие T-ступени в первом и последнем звене, порядок
следования T- и S-ступеней внутри поля - произвольно с соблюдением правила симметрии
3. Базовая структура: S/T*k – S*r – S/T*k
4. Базовая структура: S/T*k
5. Кольцевые цифровые коммутационные поля.
На начальных этапах развития ЦКС из-за высокой стоимости ЗУ основу ЦКП составляли S-звенья. Однако, S-коммутаторы имеют большую вероятность внутренних блокировок, поэтому на практике получили распространение структуры, где пространственные ступени коммутации разделены временными ступенями.
Уменьшение стоимости элементов памяти в начале 70-х годов позволило начать внедрение цифровых КП 2-го класса. Среди синхронных КП этого типа наибольшее распространение получили подструктуры с применением MUX и DMUX, поскольку базовые структуры КП 2-го класса имели малую емкость.
Структуры ЦКП 3-го класса появились в конце 70-х годов благодаря возможности создания соответствующих интегральных схем.
В настоящее время структуры 4-го класса ЦКП находят широкое применение благодаря удобствам увеличения емкости поля путем простого добавления S/T-ступеней.
Кольцевые ЦКП не получили широкого применения в настоящее время.
27. Цифровые кп 1-го класса: s-t-s. Пример построения и логика работы. Какую временную задержку вносит такое поле? Почему такие поля применялись раньше и не применяются теперь?
Цифровые поля первого класса объединяют все симметричные КП, состоящие из T- и S- ступеней, где начальное и конечное звенья являются S- ступенями. Цифровые КП этого класса имеют 1 или 2 каскада S- и 1 каскад Т-, т.е. имеют структуру S-Т-S или S-S-Т-S-S. Дополнительный каскад пространственной коммутации (S-) служит для увеличения пропускной способности КП, но не влияет на принципы установления соединений.
Базовая структура при 1 S- и 1 Т- каскадах позволяет строить цифровые КП малой ёмкости.
Логика работы.
Пусть необходимо осуществить коммутацию КИ1 первой входящей линии с КИ5 четвёртой выходящей линии и пусть в КП реализуется алгоритм «произвольная запись – последовательное считывание». Тогда на первом этапе процессорный блок определяет элемент Т-ступени, в которой свободна ячейка памяти, соответствующая КИ5. Пусть таким оказался второй элемент. После этого:
- в соответствующую ячейку УЗУ1 заносится адрес первой входящей линии, соотносимый с временным интервалом КИ1;
- в соответствующую ячейку УЗУ2 заносится адрес второго элемента Т-ступени, соотносимый с временным интервалом КИ5;
- в соответствующую ячейку УЗУ3 заносится адрес четвёртой выходящей линии.
Тогда в КИ1 кодовая комбинация из первой входящей линии записывается во второй элемент Т-ступени в ячейку памяти, соответствующую КИ5. Во временной промежуток КИ5 эта кодовая комбинация считывается из памяти и поступает на четвёртую выходящую линию.
Многокоординатные цифровые системы передачи с КП первого класса не нашли широкого применения из-за своей сложности и необходимости применения на входе дополнительных элементов памяти, обеспечивающих функцию выравнивания временных каналов входящих СЛ. Поэтому необходимо было искать другие способы увеличения ёмкости цифровых КП.
Задержка, вносимая таким КП, равна задержке одного Т эл-та и находится следующим образом:
Если выходной КИ больше входного, то задержка равняется разнице между ними +0,5 задержки самого КИ.
Если проключение происходит назад (от 2 КИ к 1 КИ), то задержка равняется полному кругу – 1.
Если передача осуществляется в одноименных КИ, то задержка равняется половине длительности самого КИ.
28. Цифровые коммутационные поля 1-го класса: S-T-S. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая линейного искания.(разобраться с буквами в схеме)
Цифровые поля первого класса объединяют все симметричные КП, состоящие из Т- и S-ступеней, где начальное и конечное звенья являются S- ступенями. Цифровые КП этого класса реально имеют k=1,2 каскадов S- и r=1 каскадов Т-, т.е. имеют структуру
S-T- S или S-S-T-S-S. Дополнительный каскад пространственной коммутации служит для увеличения пропускной способности КП, но не влияет на принципы установления соединений.