
- •1. Структурная схема и алгоритм работы простейшей атсэ с временным разделением каналов (аим). Назначение элементов схемы. Почему атсэ с аим не может работать без усилителей в разговорном тракте?
- •2. Структурная схема и алгоритм работы атсэ с временным разделением каналов (аим) и усилителями в абонентских комплектах. Назначение элементов схемы. Какие требования к усилителю в такой схеме?
- •Структурная схема и алгоритм работы атсэ с временным разделением каналов (аим) и усилителем в общем тракте передачи. Назначение элементов схемы. Какие требования к усилителю в такой схеме?
- •4.Группообразование в атсэ с временным разделением каналов (аим). Объяснить, какая часть схемы выполняет функции предварительного искания, а какая – группового.
- •5. Основная идея икм. Какие параметры квантования по амплитуде и по времени приняты в качестве стандартных в телефонии и почему.
- •6. Стандартные цифровые потоки – название, скорость передачи данных, количество канальных интервалов. Объяснить понятие «канальный интервал».
- •7. Способы группообразования в цифровых атс: общий обзор, принципы цифрового группообразования. В каких случаях какой способ применяется?
- •8.Структурная схема простейшей цифровой атс. Объяснить логику работы.
- •9.Объяснить, почему простейшая структурная схема п рименяется только для небольших офисных цифровых атс. Что мешает ее использовать для станций на тысячи номеров?
- •10. Два способа построения блока временной коммутации. Описание логики работы в обоих случаях. Когда какой из них применяется?
- •С последовательной записью и произвольным чтением:
- •С произвольной записью и последовательным чтением.
- •Эквивалентная схема:
- •11.Структурная схема и алгоритм работы блока временной коммутации. Объяснить, как происходит перенос разговора из одного канального интервала в другой «назад» и «вперед».
- •Структурная схема и алгоритм работы блока временной коммутации. Чем ограничена пропускная способность такого коммутационного элемента? Показать на временной диаграмме.
- •13.Структурная схема блока временной коммутации. Как рассчитать объем памяти, необходимый для построения такого блока? От чего он зависит?
- •14. Эквивалентная схема блока временной коммутации (т – элемент), как рассчитываются параметры телефонной нагрузки для блока временной коммутации.
- •15. Структурная схема и алгоритм работы блока пространственной коммутации на базе коммутационной матрицы из логических элементов.
- •16. Структурная схема и алгоритм работы блока пространственной коммутации на мультиплексорах. Привести пример заполнения ячеек для конкретного задания на коммутацию.
- •17.Структурная схема и алгоритм работы блока пространственной коммутации на демультиплексорах. Привести пример заполнения ячеек для конкретного задания на коммутацию
- •18.Для чего нужен „показатель сложности” при расчете схем цифровой коммутации? Показать на примере сравнения схемы пространственной коммутации на мультиплексорах и демультиплексорах.
- •19. Пространственный эквивалент блока пространственной коммутации. Какие формулы можно использовать для расчета параметров телефонной нагрузки такого блока?
- •20.Структурная схема и алгоритм работы блока пространственно-временной коммутации. Привести пример заполнения ячеек для конкретного задания на коммутацию.
- •22.Пространственный эквивалент блока пространственно-временной коммутации. Какие формулы можно использовать для расчета параметров телефонной нагрузки такого блока?
- •23. Анализ процесса коммутационного поля несимметричной структуры, например st поля. Почему несимметричные структуры не применяются при построении коммутационных полей.
- •24. Анализ процесса коммутации поля симметричной структуры, например, s-t-s. Какое преимущество дает использование симметричной структуры?
- •25. 4 Основных принципа построения цифровых коммутационных полей. Кратко охарактеризовать каждый из них.
- •26.Классификация цифровых коммутационных полей: краткое объяснение основных этапов эволюции цкп.
- •27. Цифровые кп 1-го класса: s-t-s. Пример построения и логика работы. Какую временную задержку вносит такое поле? Почему такие поля применялись раньше и не применяются теперь?
- •Эквивалентная схема элемента:
- •2 9.Цифровые коммутационные поля 1-го класса: s-t-s. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая группового искания с одной линией в каждом направлении.
- •Цифровые коммутационные поля 1-го класса: s-t-s. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая группового искания с несколькими линиями в одном направлении.
- •31.Цифровые коммутационные поля 1-го класса с мультиплексорами: Mx-s-t-s-Dmx. Пример построения и логика работы. Объяснить назначение и принцип действия мультиплексоров.
- •32. Цифровые коммутационные поля первого класса: ss-t-ss. Пример построения. Как зависит емкость поля от количества s ступеней.
- •33. Цифровые коммутационные поля 1-го класса: s-s-t-s-s. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая линейного искания.
- •34. Цифровые коммутационные поля 1-го класса: s-s-t-s-s. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая группового искания.
- •35.Пример цифрового коммутационного поля Mx-t-Dmx. Объяснить логику работы. К какому классу цкп относится такое поле?
- •Цифровые коммутационные поля 2-го класса: t-s-t. Пример построения и логика работы. В чем их преимущество по сравнению с полями s-t-s? Какую временную задержку вносит такое поле?
- •37. Цифровые коммутационные поля 2-го класса: t-s-t. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая линейного искания.
- •Цифровые коммутационные поля 2-го класса: t-s-t. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая группового искания с одной линией в каждом направлении.
- •40.Цифровые коммутационные поля 2-го класса с мультиплексорами: Mx-t-s-t-Dmx. Пример построения и логика работы. Объяснить назначение и принцип действия мультиплексоров.
- •Цифровые коммутационные поля 2-го класса: t-s-s-t. Пример построения и логика работы. Почему бывает недостаточно одной s-ступени?
- •Цифровые коммутационные поля 2-го класса: t-s-s-s-s-t. Пример построения и логика работы. Для чего нужно увеличивать количество s-ступеней?
- •43. Цифровые коммутационные поля 3-го класса: s/t-s-s/t. Пример построения и логика работы. В чем преимущество по сравнению с полями t-s-t?
- •44. Цифровые коммутационные поля 3-го класса: s/t-s-s/t. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая линейного искания.
- •45. Цифровые коммутационные поля 3-го класса: s/t-s-s/t. Эквивалентная схема и общая идея расчета. Построение вероятностного графа для случая группового искания.
- •46.Цифровые коммутационные поля 3-го класса: s/t-s-s-s/t. Как связаны между собой количество s-ступеней и емкость коммутационного поля?
- •47. Цифровые коммутационные поля 4-го класса: s/t-s/t-s/t. Эквивалентная схема, построение вероятностного графа. Какую временную задержку вносит такое поле?
- •48.Схема и логика работы коммутационной структуры t-Mx-Dmx-t. В каких системах она применяется? Какие требования к быстродействию т-звена?
- •49.Схема коммутационной структуры t-Mx-Dmx-t. Эквивалентная схема и вероятностный граф для нее. Логика расчета.
- •50.Схема кольцевой связи нескольких телефонных станций с помощью коммутационных структур t-Mx-Dmx-t. В чем преимущества такой схемы связи?
- •Структурная схема и алгоритм работы простейшей атсэ с временным разделением каналов (аим). Назначение элементов схемы. Почему атсэ с аим не может работать без усилителей в разговорном тракте?
- •Структурная схема и алгоритм работы атсэ с временным разделением каналов (аим) и усилителями в абонентских комплектах. Назначение элементов схемы. Какие требования к усилителю в такой схеме?
14. Эквивалентная схема блока временной коммутации (т – элемент), как рассчитываются параметры телефонной нагрузки для блока временной коммутации.
Определяем пропускную способность к линий по первой формуле Эрланга. (использую таблицу Башарина). Y(k, 0,003).
- т.к.поток
простейший.
15. Структурная схема и алгоритм работы блока пространственной коммутации на базе коммутационной матрицы из логических элементов.
Коммутационная матрица состоит из вертикальных и горизонтальных шин и элементов «И», которые являются электронными ключами.
Пусть в некоторые канальные интервалы (например, КИ1 и КИ2) необходимо передавать кодовые слова из первой входящей ИКМ линии, которая включена в первую горизонтальную шину, во вторую и в N-ю исходящие ИКМ линии, которые включены во вторую и в N-ю вертикальные шины соответственно. В заданное время управляющее устройство включает соответствующие ключи, посылая сигналы управления у12 и у1n , и кодовое слово во время КИ1 из первой входящей ИКМ линии попадает во вторую исходящую ИКМ линию, а во время КИ2 – в N-ю исходящую ИКМ линию.
Каждый ключ остается открытым только на время длительности одного канального интервала. Для обеспечения нормальной работы такой матрицы необходимо, чтобы в каждый момент времени работал только один ключ на каждой вертикали.
16. Структурная схема и алгоритм работы блока пространственной коммутации на мультиплексорах. Привести пример заполнения ячеек для конкретного задания на коммутацию.
Счетчик синхронизирован с входным потоком. Когда Mux закрыт, это не значит, что на выходе «0» или «1», это значит, что закрыт открытый коллекторный вход и на эту СЛ могут подключатся другие Mux.
Предположим, задано такое задание на коммутацию:
a1b1, a2c2, a3a3, b1a1, b2a2, b3c3, c1b1, c2b2, c3a3.
Рассмотрим алгоритм работы блока: сначала необходимо проключить разговор с линии «а», КИ 1, на линию «b», КИ тоже 1 (S-коммутационный элемент коммутирует только одноименные КИ). Следовательно, в ячейке мультиплексора линии «b» в первом КИ записывается «1» (т.к. линия «а» подключена к первому входу Mux). Рассмотрим также вариант «a2c2»: в ячейку Mux линии «с» во второй КИ записывается «1», и т.д. когда дойдем до задания «c1b1», увидим, что необходимая ячейка уже занята, такая же ситуация и с заданием «c3a3», значит этот разговор не проключается.
17.Структурная схема и алгоритм работы блока пространственной коммутации на демультиплексорах. Привести пример заполнения ячеек для конкретного задания на коммутацию
Цифровая
пространственная коммутация дает
возможность соединять входы с выходами
только в тех случаях, когда номер
временного интервала, отведенного
входу, совпадает с номером временного
интервала, отведенного выходу. В связи
с этим коммутационные поля, построенные
только из пространственных коммутаторов,
в ц
ифровых
АТС практически не применяются.
Элемент S может проключать только в одном КИ, но на разные линии.
Вх |
Вых |
КИ |
2 |
4 |
24 |
1 |
2 |
16 |
3 |
4 |
13 |
2 |
6 |
32 |
В память Dmux, на кот поступает разговор в ячейку соответствующего КИ записывается номер линии, на кот этот разговор должен проключиться.
Рассмотрим алгоритм работы блока: необходимо проключить разговор со 2-й линии 24КИ на 4-ю линию того же КИ. В память 2-го демультиплексора в ячейку 24-го КИ записываем «4», что соответствует номеру линии, но кот нам нужно проключить разговор и т.д.