Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
алгебра (Автосохраненный).docx
Скачиваний:
8
Добавлен:
24.04.2019
Размер:
452.21 Кб
Скачать

13.Метод Гаусса исследования и решения систем линейных уравнений.

Ме́тод Га́усса[1] — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные[2].

Пусть исходная система выглядит следующим образом

Матрица A называется основной матрицей системы, b — столбцом свободных членов.

Тогда согласно свойству элементарных преобразований над строками основную матрицу этой системы можно привести к ступенчатому виду(эти же преобразования нужно применять к столбцу свободных членов):

При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных [3].

Тогда переменные называются главными переменными. Все остальные называются свободными.

Если хотя бы одно число , где i > r, то рассматриваемая система несовместна.

Пусть для любых i > r.

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом ( , где  — номер строки):

, где

Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.

14.Системы однородных линейных уравнений. Условие единственности решения.

Однородные системы линейных уравнений

     Однородная система линейных уравнений AX = 0 всегда совместна. Она имеет нетривиальные (ненулевые) решения, если r = rank A < n.

     Для однородных систем базисные переменные (коэффициенты при которых образуют базисный минор) выражаются через свободные переменные соотношениями вида:

     Тогда n - r линейно независимыми вектор-решениями будут:

а любое другое решение является их линейной комбинацией. Вектор-решения образуют нормированную фундаментальную систему.

     В линейном пространстве множество решений однородной системы линейных уравнений образует подпространство размерности n - r; - базис этого подпространства.

15.Линейные пространства:определение,примеры.

 Определение линейного пространства

     Пусть V - непустое множество (его элементы будем называть векторами и обозначать ...), в котором установлены правила:

     1) любым двум элементам соответствует третий элемент называемый суммой элементов (внутренняя операция);

     2) каждому и каждому отвечает определенный элемент (внешняя операция).

     Множество V называется действительным линейным (векторным) пространством, если выполняются аксиомы:

     I.

     II.

     III. (нулевой элемент, такой, что ).

     IV. (элемент, противоположный элементу ), такой, что

     V.

     VI.

     VII.

     VIII.