Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_na_ekz_po_fizike.doc
Скачиваний:
7
Добавлен:
24.04.2019
Размер:
1.73 Mб
Скачать
  1. Электрический диполь.

Характеристики электрического диполя. Поле диполя. Диполь в электрическом поле.

Совокупность двух равных по величине разноименных точечных зарядов q, расположенных на некотором расстоянии   друг от друга, малом по сравнению с расстоянием до рассматриваемой точки поля называется электрическим диполем.(рис.13.1)

Произведение   называется моментом диполя. Прямая линия, соединяющая заряды называется осью диполя. Обычно момент диполя считается направленным по оси диполя в сторону положительного заряда.

  1. Электрическое поле в веществе.

Поляризованность. Восприимчивость. Диэлектрическая проницаемость. Теорема Гаусса для поляризованности. Электростатическая индукция.

Если поместить диэлектрик во внешнее электрическое поле, то он поляризуется, т. е. получит неравный нулю дипольный момент pV=∑pi где pi — дипольный момент одной молекулы. Чтобы произвести количественное описание поляризации диэлектрика вводят векторную величину — поляризованность, которая определяется как дипольный момент единицы объема диэлектрика: (1) Из опыта известно, что для большого класса диэлектриков (за исключением сегнетоэлектриков, см. далее) поляризованность Р зависит от напряженности поля Е линейно . Если диэлектрик изотропный и Е численно не слишком велико, то (2) где θ — диэлектрическая восприимчивость вещества, она характеризует свойства диэлектрика; θ – безразмерная величина; притом всегда θ>0 и для большинства диэлектриков (жидких и твердых) составляет несколько единиц (но, например, для спирта θ≈25, для воды θ≈80). Для определения количественных закономерностей электрического поля в диэлектрике поместим в однородное внешнее электрическое поле Е0 (к примеру, между двумя бесконечными параллельными разноименно заряженными плоскостями) пластинку из однородного диэлектрика, расположив ее, согласно рис. 1. Под действием поля диэлектрик поляризуется, т. е. осуществляется смещение зарядов: положительные смещаются по направлению поля, отрицательные — против направления поля. В результате, на правой грани диэлектрика, который обращен к отрицательной плоскости, будет избыток положительного заряда с поверхностной плотностью +σ', на левой грани — отрицательного заряда с поверхностной плотностью –σ'. Эти нескомпенсированные заряды, которые появляются в результате поляризации диэлектрика, называются связанными. Поскольку их поверхностная плотность σ' меньше плотности σ свободных зарядов плоскостей, то не все поле Е компенсируется полем зарядов диэлектрика: часть линий напряженности проходит сквозь диэлектрик, другая же часть — останавливается на связанных зарядах. Значит, поляризация диэлектрика вызывает уменьшение в нем поля по сравнению с первоначальным внешним полем. Вне диэлектрика Е = Е0. Значит, возникновение связанных зарядов приводит к появлению дополнительного электрического поля Е' (поля, которое создается связанными зарядами), направленого против внешнего поля Е0 (поля, которое создается свободными зарядами) и ослабляет его. Результирующее поле внутри диэлектрика Поле Е'=σ'/ε0 (поле, созданное двумя бесконечными заряженными плоскостями), значит (3) Найдем поверхностную плотность связанных зарядов σ'. Согласно (1), полный дипольный момент пластинки диэлектрика pV=PV=PSd, где d — толщина пластинки, S — площадь ее грани. С другой стороны, полный дипольный момент, равен произведению связанного заряда каждой грани Q' =σ'S на расстояние d между ними, т. е. рV = σ'Sd. Значит, PSd=σ'Sd, или (4) т. е. поверхностная плотность связанных зарядов σ' равна поляризованности Р. Подставив в формулу (3) выражения (4) и (2), получим откуда напряженность результирующего поля внутри диэлектрика равна (5) Безразмерная величина (6) называется диэлектрической проницаемостью среды. Сравнивая (5) и (6), можем сделать вывод, что ε показывает, во сколько раз поле ослабляется диэлектриком, и характеризует количественно свойство диэлектрика поляризоваться в электрическом поле.

теорему Гаусса для вектора поляризованности в дифференциальной форме:

(5.12)

Выясним, в каких случаях объемная плотность связанных зарядов отлична от нуля. Выразим P в (5.12) через E согласно (5.6)

' = –E) = –E) = –E+E)

(5.13)

В теореме Гаусса для вектора E, записанной в дифференциальной форме (2.17), в правой части стоит объемная плотность заряда, включающая в случае диэлектрика как плотность сторонних, так и связанных зарядов

E=(+')/

(5.14)

Заменяя в (5.13) E согласно (5.14) получим

' = –E –  –'

(5.15)

Отсюда

' = –E + )/(1+

(5.16)

Из последнего выражения видно, что объемная плотность связанного заряда в диэлектрике отлична от нуля в двух случаях: (1) когда диэлектрик поляризуется неоднородно (есть функция координаты) и/или (2) в диэлектрике присутствует сторонний заряд (отлично от нуля). При однородной поляризации и отсутствии стороннего заряда внутри диэлектрика равенство нулю связанного объемного заряда легко усматривается из рис. 5.1.

Рис. 5.4

Рассмотрим границу раздела двух однородных изотропных диэлектриков 1 и 2 (рис. 5.4). Выделим мысленно на границе раздела цилиндр с площадью основания S с образующей, перпендикулярной границе раздела. Выберем произвольно направление нормали n к границе, как показано на рисунке. Пусть площадка S, вырезаемая цилиндром на границе, столь мала, что ее можно считать плоской, а поляризованность каждого из диэлектриков в ее пределах постоянной.

Найдем поток Ф вектора P через поверхность цилиндра. Поток через нижнее основание цилиндра равен P1·S cos (P1, n1), а через верхнее P2·S cos (P2, n2), где индексами 1 и 2 обозначены величины, относящиеся соответственно к внутренней и внешней по отношению к нормали n сторонам границы раздела. Поток через боковую поверхность цилиндра обозначим Ф'. Тогда будем иметь

(5.17)

Направление нормали n2 совпадает с направлением нормали n, а направление нормали n1 прямо противоположно. Следовательно

P1·S cos (P1, n1) = -P1n ;

 

P2·S cos (P2, n2)=P2n ,

где P1n и P2n - проекции вектров P1и P2 на нормаль n. Таким образом

Ф= (P2n - P1n ) S + Ф'.

Будем теперь уменьшать высоту цилиндра, не изменяя при этом его основания. Поток Ф' через безгранично уменьшающуюся боковую поверхность будет стремиться к нулю, так что общий поток через поверхность цилиндра сведется в пределе к потоку через его основания:

Ф= (P2n - P1n ) S .

Для однородных диэлектриков объемный связанный заряд, как было показано выше, равен нулю. Стало быть внутри цилиндра окажется заряд, расположенный на границе раздела на элементе поверхности S. Этот заряд равен S·', где ' - поверхностная плотность связанного заряда на границе раздела диэлектриков. На основании теоремы Гаусса для вектора P запишем

(P2n - P1n ) S = -S·',

откуда

(P2n - P1n ) = - '

(5.18)

Иными словами, на границе раздела нормальная составляющая вектора P испытывает разрыв, величина которого зависит от '. В частности, если среда 2 вакуум, то P2n = 0 и

Pn ='

(5.19)

где Pn проекция вектора P на внешнюю нормаль к поверхности данного диэлектрика.

Электростатическая индукция — явление наведения собственного электростатического поля, при действии на тело внешнего электрического поля. Явление обусловлено перераспределением зарядов внутри проводящих тел, а также поляризацией внутренних микроструктур[1] у непроводящих тел. Внешнее электрическое поле может значительно исказиться вблизи тела с индуцированным электрическим полем. Электростатическая индукция в проводниках ==

Перераспределение зарядов в хорошо проводящих металлах при действии внешнего электрического поля происходит до тех пор, пока заряды внутри тела практически полностью не скомпенсируют внешнее электрическое поле. При этом на противоположных сторонах<ref>относительно внешнего электрического поля</ref> проводящего тела появятся противоположные ''наведённые(индуцированные) заряды''.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]