
- •Предисловие
- •1. Естественно-научная и гуманитарная формы культуры. Научный метод
- •1.1. Естественно-научная и гуманитарная формы культуры
- •1.2. Научный метод
- •Контрольные вопросы
- •2.1.2. Развитие представлений о природе света. Корпускулярно-волновой дуализм
- •2.2. Порядок и беспорядок в природе, детерминированный хаос
- •2.3. Структурные уровни организации материи
- •2.3.1. Микромир
- •2.3.2. Макромир
- •2.3.3. Мегамир
- •2.4. Пространство и время
- •2.4.1. Единство и многообразие свойств пространства и времени
- •2.4.2. Принцип причинности
- •2.4.3. Необратимость – неустранимое свойство реальности. Стрела времени
- •2.4.4. Современные взгляды на пространство и время
- •2.5. Принципы относительности
- •2.5.1. Принцип относительности в классической механике
- •2.5.2. Специальная теория относительности
- •2.5.3. Общая теория относительности
- •2.6. Принципы симметрии и законы сохранения
- •2.6.1. Симметрия: понятие, формы и свойства
- •2.6.2. Принципы симметрии и законы сохранения
- •2.6.3. Диалектика симметрии и асимметрии
- •2.7. Взаимодействие, близкодействие, дальнодействие
- •2.7.1. Концепции близкодействия и дальнодействия
- •2.7.2. Фундаментальные типы взаимодействий
- •2.8. Состояние, принципы суперпозиции, неопределенности, дополнительности
- •2.8.1. Принцип неопределенности
- •2.8.2. Принцип дополнительности
- •2.8.3. Принцип суперпозиции
- •2.9. Динамические и статистические закономерности в природе
- •2.10. Законы сохранения энергии в макроскопических процессах
- •2.10.1. Формы энергии
- •2.10.2. Закон сохранения энергии для механических процессов
- •2.10.3. Всеобщий закон сохранения и превращения энергии
- •2.10.4. Закон сохранения энергии в термодинамике
- •2.11. Принцип возрастания энтропии
- •2.11.1. Понятие энтропии
- •2.12. Основные космологические теории эволюции Вселенной
- •3. Химические концепции описания природы
- •3.1. Развитие учения о составе вещества
- •3.2. Развитие учения о структуре молекул
- •3.3. Развитие учения о химических процессах
- •3.3.1. Энергетика химических процессов и систем
- •3.3.2. Реакционная способность веществ
- •3.3.3. Химическое равновесие. Принцип Ле Шателье
- •3.4. Развитие представлений об эволюционной химии
- •4. Геологические концепции описания природы
- •4.1. Внутреннее строение и история образования Земли
- •4.1.1. Внутреннее строение Земли
- •4.1.2. История геологического строения Земли
- •4.2. Современные концепции развития геосферных оболочек
- •4.2.1. Концепция глобальной геологической эволюции Земли
- •4.2.2. История формирования геосферных оболочек
- •4.3. Литосфера как абиотическая основа жизни
- •4.3.1. Понятие литосферы
- •4.3.2. Экологический функции литосферы
- •4.3.3. Литосфера как абиотическая среда
- •5. Биологические концепции описания природы
- •5.1. Особенности биологического уровня организации материи
- •5.1.1. Уровни организации живой материи
- •5.1.2. Свойства живых систем
- •5.1.3. Химический состав, строение и воспроизведение клеток
- •5.1.4. Биосфера и ее структура
- •5.1.5. Функции живого вещества биосферы
- •5.1.6. Круговорот веществ в биосфере
- •5.2. Принципы эволюции, воспроизводства и развития живых систем
- •5.2.1. Основные эволюционные учения
- •5.2.3. Микро- и макроэволюция. Факторы эволюции
- •5.2.4. Направления эволюционного процесса
- •5.2.5. Основные правила эволюции
- •5.3. Происхождение жизни на Земле
- •5.3.1. Условия возникновения жизни при биохимической эволюции
- •5.3.2. Механизм возникновения жизни
- •5.3.3. Начальные этапы развития жизни на Земле
- •5.3.4. Основные этапы развития биосферы
- •5.4. Многообразие живых организмов – основа организации и устойчивости биосферы
- •5.4.1. Система органического мира Земли
- •Неклеточные формы
- •Клеточные формы Надцарство Прокариоты
- •Надцарство Эукариоты
- •5.4.2. Экологические факторы. Структура и функционирование экологических систем
- •5.4.3. Глобальные экологические проблемы. Концепции устойчивого развития
- •5.5. Генетика и эволюция
- •5.5.1. Генетические признаки и носители наследственной информации
- •5.5.2. Основные генетические процессы. Биосинтез белка
- •5.5.3. Основные законы генетики
- •5.5.4. Наследственная и ненаследственная изменчивость
- •5.5.7. Генная инженерия и клонирование как факторы дальнейшей эволюции
- •Контрольные вопросы
- •6.1.2. Физиологические особенности человека
- •6.1.3. Здоровье человека
- •Группировка факторов риска и их значение для здоровья
- •6.1.4. Эмоции. Творчество
- •6.1.5. Работоспособность
- •7. Человек, биосфера и космические циклы
- •7.1. Биоэтика
- •7.1.1. Противоречия современной цивилизации
- •7.1.2. Понятие биоэтики и ее принципы
- •7.1.3. Медицинская биоэтика
- •7.2. Биосфера и космические циклы
- •7.3. Биосфера и ноосфера
- •7.4. Современное естествознание и экология
- •7.5. Экологическая философия
- •7.6. Планетарное мышление
- •7.6. Ноосфера
- •Контрольные вопросы
- •8. Проблемы самоорганизации материи и универсальный эволюционизм
- •8.1. Самоорганизация в живой и неживой природе
- •8.1.1. Пространственные диссипативные структуры
- •8.1.2. Временные диссипативные структуры
- •8.1.3. Химическая основа морфогенеза
- •8.1.4. Самоорганизация в живой природе
- •8.2.5. Самоорганизация в неравновесных системах
- •8.1.6. Типы процессов самоорганизации
- •8.2. Принципы универсального эволюционизма
- •8.3. Самоорганизация в микромире. Формирование элементного состава вещества материи
- •8.4. Самоорганизация в живой и неживой природе
- •8.5. Концепции эволюционного естествознания
- •8.5.1 Структурность и целостность в природе. Фундаментальность понятия целостности
- •8.5.2. Принципы целостности современного естествознания
- •8.5.3. Самоорганизация в природе в терминах параметров порядка
- •Контрольные вопросы
- •9. Путь к единой культуре. Синергетическая парадигма фундаментальности
- •9. 1. Методология постижения открытого нелинейного мира
- •9.2. Чему «учат» концепции современного естествознания?
- •9.3. Основные черты современного естествознания
- •9.4. Принципы синергетики, эволюционная триада и синергетическая среда в постижении природы
- •9.5. Принципы нелинейного образа мира
- •9.6. От автоколебаний к самоорганизации
- •9.7. Формирование инновационной культуры
- •Глоссарий
- •Список литературы
- •Приложение
- •(Для студентов дневного, заочного и дистанционного обучения)
- •Оглавление
- •Концепции современного естествознания Учебник
- •445677, Г. Тольятти, ул. Гагарина, 4.
5.3. Происхождение жизни на Земле
Существует несколько гипотез о происхождении жизни на Земле.
Креационизм – земная жизнь была создана Творцом. Представления о Божественном сотворении мира придерживаются последователи почти всех наиболее распространенных религиозных учений. Ни доказать, ни опровергнуть креационистическую концепцию в настоящее время невозможно.
Гипотеза вечности жизни – жизнь, как и сама Вселенная, существовала всегда, и будет существовать вечно, не имея начала и конца. Вместе с тем отдельные тела и образования – галактики, звезды, планеты, организмы – возникают и погибают, т.е. существование во времени ограничено. Жизнь могла распространяться от одной галактики к другой и эта идея «заноса» на Землю жизни из Космоса называется панспермией. Идеи «вечности и безначальности» жизни придерживались многие ученые, среди них С.П. Костычев, В.И. Вернадский.
Гипотеза самопроизвольного зарождения жизни из неживой материи. Идеи о самозарождении жизни высказывались еще со времен античности. На протяжении тысячелетий они верили в возможность постоянного самопроизвольного зарождения жизни, считая его обычным способом появления живых существ из неживой материи. По мнению многих ученых средневековья, рыбы могли зарождаться из ила, черви – из почвы, мыши – из тряпок, мухи – из гнилого мяса. В XVII в. итальянский ученый Ф. Реди экспериментально показал невозможность постоянного самозарождения живого. В нескольких стеклянных сосудах он поместил кусочки мяса. Часть из них он оставил открытыми, а часть прикрыл кисеей. Личинки мух появились только в открытых сосудах, в закрытых их не было. Принцип Реди: «живое – от живого». Окончательно версия о постоянном самозарождении живых организмов была опровергнута в середине XIX в. Л. Пастером. Опыты убедительно показывали, что в современную эпоху живые организмы любого размера происходят от других живых организмов.
Гипотеза биохимической эволюции. По представлениям, высказанным в 20-х гг. ХХ в. А.И.Опариным, а затем Дж. Холдейном, жизнь, а точнее, живое, возникло из неживой материи на Земле в результате биохимической эволюции.
5.3.1. Условия возникновения жизни при биохимической эволюции
В настоящее время учеными предложены более или менее вероятные объяснения, каким образом в первичных условиях Земли из неживой материи постепенно, шаг за шагом, развились разнообразные формы жизни. Возникновению жизни путем химической эволюции способствовали следующие условия:
- первоначальное отсутствие жизни;
- наличие в атмосфере соединений, обладающих восстановительными свойствами (при почти полном отсутствии кислорода О2);
- наличие воды и биогенных веществ;
- наличие источника энергии (относительно высокая температура, мощные электрические разряды, высокий уровень УФ-излучения).
5.3.2. Механизм возникновения жизни
Возраст Земли составляет около 4,6–4,7 млрд. лет. Жизнь имеет свою историю, начавшуюся, по палеонтологическим данным, 3–3,5 млрд. лет назад.
В 1924 г. русский академик А.И. Опарин выдвинул гипотезу о механизме зарождения жизни. В 1953 г. американские ученые С. Миллер и Г. Юри экспериментально подтвердили гипотезу образование органических веществ (мономеров) из газов, присутствующих в первичной атмосфере Земли.
В настоящее время имеется уже достаточно много неоспоримых доказательств того, что первичная атмосфера Земли была бескислородной и, вероятно, состояла главным образом из водяных паров H2O, водорода H2 и углекислого газа CO2 с небольшой примесью других газов (NH3, CH4, CO, H2S). Возникшая на Земле жизнь постепенно изменила эти условия и преобразовала химию верхних оболочек планеты.
Согласно биохимической теории А.И. Опарина в отсутствие кислорода и живых организмов, абиогено синтезировались простейшие органические соединения – мономеров, предшественники биологических макромолекул живого вещества и ряда других органических соединений.
Возможными источниками энергии для образования органических веществ без участия живых организмов, видимо, являлись электрические разряды, ультрафиолетовое излучение, радиоактивные частицы, космические лучи, ударные волны от метеоритов, попадавших в земную атмосферу, теплота от интенсивной вулканической деятельности. В отсутствие кислорода, который мог бы их разрушить, а также живых организмов, которые использовали бы их в качестве пищи, абиогенно образовавшиеся органические вещества накапливались в Мировом океане – «первичном бульоне».
Следующим шагом было образование более крупных полимеров из малых органических мономеров, опять же без участия живых организмов. Американский ученый С. Фокс в результате нагревания смеси сухих аминокислот получил полипептиды различной длины. Они были названы протеиноидами, т.е. белковообразными веществами. Видимо, на первобытной Земле образование таких протеиноидов и полинуклеотидов со случайной последовательностью аминокислот или нуклеотидов могло происходить при испарении воды в водоемах, остававшихся после отлива. Если полимер образовался, он способен влиять на образование других полимеров. Некоторые протеиноиды способны, подобно ферментам, катализировать определенные химические реакции: именно эта способность, наверное, была главной чертой, определившей их последующую эволюцию. Эксперименты показывают, что один полинуклеотид, возникший из смеси нуклеотидов может служить матрицей для синтеза другого.
Полипептиды благодаря их амфотерности формировали коллоидные гидрофильные комплексы (т.е. молекулы воды, образуя вокруг белковых молекул оболочку, обособляли их от всей массы воды). При этом отдельные комплексы ассоциировались друг с другом, что приводило к образованию обособленных от первичной среды капель коацерватов, способных поглощать и избирательно накапливать различные соединения. Естественный отбор способствовал выживанию наиболее устойчивых коацерватных систем, способных к дальнейшему усложнению. Дальнейшая самоорганизация сложных молекул, происходившая за счет концентрирования на границе между коацерватами и внешней средой молекул липидов, привела к образованию перегородок мембранного типа. Во внутренних полостях коацерватов, куда уже только выборочно проникать молекулы, началась эволюцию от химических реакций к биохимическим. Одной из важнейших ступеней этой теории явилось объединение способности полинуклеотидов с каталитической активностью белков-ферментов.
Точка зрения Опарина и его сторонников по существу сформировала гипотезу голобиоза: структурную основу доклеточного предка (биоида) составляют жизнеподобные открытые (коацерватные) микросистемы, типа клеточной, способные к элементарному обмену веществ при участии ферментного механизма. Первичной белковая субстанция.
Гипотеза генобиоза: первичной была макромолекулярная система, подобная гену, способная к саморепродукции. Первичной признана молекула РНК.