- •1.Происхождение нефти. Залежи и месторождения нефти и газа.
- •2.Состав и свойства нефти
- •3. Состав и свойства природного газа
- •4 Состав и основные свойства пластовых вод
- •5. Классификация нефти по содержанию в них серы, парафина, смол.
- •5. Классификация нефти по содержанию в них серы, парафина, смол.
- •6. Плотность нефти. Измерение плотности нефти.
- •7. Вязкость нефти, её значение, измерение.
- •8. Классификация пород-коллекторов нефти и газа.
- •9. Гранулометрический состав горных пород, способы его определения.
- •10. Пористость горных пород. Виды. Определение пористости.
- •11. Проницаемость горных пород и методы определения. Закон Дарси.
- •12. Плотность горных пород, их виды, значения.
- •13. Механические свойства горных пород.
- •14. Теплофизические свойства горных пород.
- •16. Уравнение состояния газов.
- •17. Физические свойства нефти в пластовых условиях.
- •18. Режимы работы нефтяных и газовых залежей.
- •19 Пластовое давление: определение, формула.
- •20. Приведенное пластовое давление, порядок его определения.
- •21. Плотность и объемный коэффициент нефти, их значение в добычи нефти.
- •22.Состав и основные свойства пластовых вод
- •23. Классификация пластовых вод по мессу залегания и степени минерализации.
- •24. Понятие о пластовом и забойном давлениях, способы их определения.
- •25. Пластовая температура. Оценка величины пластовой температуры.
- •26. Исследование проб пластовой нефти.
- •27. Пластовая энергия и силы, действующие в залежи.
- •28. Состояние углеводородных смесей в зависимости от давления и температуры. Диаграмма фазовых состояний
- •29. Цели и задачи исследований скважин
- •30. Содержание связанной воды в нефтяной залежи.
- •31. Показатели нефтеотдачи пластов: коэффициент нефтеотдачи, коэффициент вытеснения, коэффициент охвата.
- •32. Механизм вытеснения нефти из пласта.
- •33. Водонапорный режим работы залежи, условия применения.
- •33. Водонапорный режим работы залежи, условия применения.
- •35. Режим растворенного газа, условия применения.
- •36. Объект и система разработки месторождений.
- •37. Система и показатели разработки.
- •38. Стадии разработки месторождений
- •39. Особенности разработки газовых и газоконденсатных месторождений.
- •40. Контроль за разработкой месторождений
- •41. Основы проектирования разработки залежей.
- •42. Охрана природы и недр при осуществлении процесса разработки месторождений.
- •43. Цели и задачи исследований скважин и пластов.
- •44. Исследование скважин при установившихся режимах фильтрации
- •45. Исследование скважин на неустановившихся режимах.
- •46. Коэффициент продуктивности скважин.
- •47.Исследования нагнетательных скважин
- •48. Техника, применяемая при исследовании скважин.
- •49. Понятие о методах воздействия на нефтяные пласты.
- •50. Виды заводнения, условия их применения.
- •51. Законтурное заводнение, область применения.
- •52. Внутриконтурное заводнение, область применения.
- •53. Выбор и расположение нагнетальных скважин.
- •54. Источники водоснабжения нагнетательных скважин.
- •55. Блочные кустовые насосные станции (бкнс), принцип работы.
- •57. Требования, предъявляемые к закачиваемой воде
- •58. Классификация методов увеличения нефтеотдачи пластов.
- •Критерии эффективного применения методов.
- •59. Гидродинамические методы увеличения нефтеотдачи, условия применения.
- •60. Тепловые методы увеличения нефтеотдачи. Условия приминения.
- •Внутрипластовое горение
- •61. Газовые методы вытеснения нефти из пласта
- •62.Физико-химические методы вытеснения остаточной нефти, условия применения.
- •63. Микробиологические методы воздействия на пласт, критерии выбора объекта.
7. Вязкость нефти, её значение, измерение.
Вязкостью нефти (скоростью истечения или удельной вязкостью) называется отношение периодов времени истечения определенного объема нефти из некапиллярного сосуда и такого же объема воды. Вязкость определяется при помощи особых приборов называемых вискозиметрами (см. это сл.). Вязкость нефтяных фракций увеличивается с увеличением их плотностей; с другой стороны, фракции разных нефтей одинаковой плотности неодинаково вязки; это относится также и к нефти. Нефть становится более вязкой, если она подвергается продолжительное время действию воздуха и света, так как более легкие, летучие части иногда испаряются, отчасти же происходит и химическое изменение нефти.
Вязкость нефти в значительной степени влияет на фильтрационную способность их через различные конструкции резервуаров, она не является аддитивным свойством, поэтому ее нельзя вычислить как среднее арифметическое.
Вязкость нефтей и нефтепродуктов зависит от температуры, увеличиваясь с ее понижением. Для выражения зависимости вязкости от температуры предложено много различных формул. Наибольшее применение для практических расчетов подучила формула Рейнольдса–Филонова
V=V*e-U(T-Tж).
В нефтяной практике весьма распространено применение технических вискозиметров различных систем для определениявязкости нефти.
8. Классификация пород-коллекторов нефти и газа.
Подавляющая часть нефтяных и газовых месторождений приурочена к коллекторам трёх типов – гранулярным, трещинным и смешанного строения. К первому типу относятся коллекторы, сложенные песчано-алевритовыми породами, поровое пространство которых состоит из межзерновых полостей. Подобным строением порового пространства характеризуются также некоторые пласты известняков и доломитов. В чисто трещиноватых коллекторах (сложенных преимущественно карбонатами) поровое пространство образуется системой трещин. При этом участки коллектора между трещинами представляют собой плотные малопроницаемые нетрещиноватые блоки пород, поровое пространство которых практически не участвует в процессах фильтрации. На практике, однако, чаще всего встречаются трещиноватые коллекторы смешанного типа, поровое пространство которых включает как системы трещин, так и поровое пространство блоков, а также каверны и карст.
Анализ показывает, что около 60% запасов нефти в мире приурочено к песчаным пластам и песчаникам, 39% – к карбонатным отложениям, 1% – к выветренным метаморфическим и изверженным породам. Следовательно, породы осадочного происхождения – основные коллекторы нефти и газа.
9. Гранулометрический состав горных пород, способы его определения.
Содержание в породе частиц различной величины, выраженное в весовых процентах, называется гранулометрическим (механическим) составом.
От гранулометрического состава зависят не только пористость, но и другие важнейшие свойства пористой среды: проницаемость, удельная поверхность и др.
На основании результатов механического анализа, проводимого в процессе эксплуатации месторождения, для оборудования забоев нефтяных скважин подбирают фильтры, предохраняющие скважину от поступления в нее песка, подбирают режимы промывок песчаных пробок и т.д. Анализ механического состава широко применяется не только для изучения свойств, их происхождения, но и в нефтепромысловой практике. Механический состав определяют ситовым анализом ( > 0,05 мм), седиментационным, в жидкости различная скорость осаждения.
Результаты замера представлены на рис. 2.2.
Рис. 2.2. Гранулометрический состав породы
Коэффициент
неоднородности Кн =
, где d60 -
частиц, при котором сумма масс всех
фракций, включая этот
= 60% от массы всех фракций, тоже d10
(от нуля до этого диаметра ).
Для нефтяных и газовых месторождений Кн = 1,1 20,0.
Проницаемость горных пород - важнейший параметр, характеризующий проводимость коллектора, т.е. способность пород пласта пропускать сквозь себя жидкость и газы при наличии перепада давления.
При эксплуатации нефтяных и газовых месторождений в пористой среде движутся нефть, газ, вода или, скажем, их смеси. В зависимости от того, что движется в пористой среде и каков характер движения, пропорциональность одной и той же среды может быть различной. Поэтому для характеристики проницаемости нефтесодержащих пород введены понятия абсолютной, эффективной (или фазовой) и относительной проницаемости.
Абсолютная проницаемость - проницаемость пористой среды при движении в ней лишь одной какой-либо фазы (газа или однородной жидкости).
Фазовая (эффективная) проницаемость - проницаемость породы для одного газа или жидкости при содержании в породе многофазных систем.
Относительная проницаемость - отношение фазовой проницаемости данной пористой среды к абсолютной ее проницаемости. За единицу проницаемости принимается - проницаемость такой пористой среды, при фильтрации через образец которой площадью в 1 м2 и длиной 1 м, при перепаде давления 1 Па расход жидкости вязкостью 1Па·с составляет 1м3 /с.
В промысловых исследованиях для оценки проницаемости обычно пользуются практической единицей – мкм2·10-3 (микрометр квадратный).
Проницаемость естественных нефтяных коллекторов изменяется в очень широком диапазоне значений даже в пределах одного и того же пласта. Приток нефти и газа к забою скважин наблюдается в пластах с высоким пластовым давлением даже при незначительной проницаемости пород (1020 мкм2·10-3 и менее). Проницаемость большинства нефтеносных и газоносных пластов составляет обычно несколько сот мкм2·10-3.
На проницаемость влияет характер напластования пород.
При эксплуатации нефтяных и газовых месторождений в пористой среде движутся нефть или газ (при наличии в порах воды), или многофазные системы (вода, нефть и газ одновременно). В этих условиях проницаемость породы для одной какой-либо фазы всегда будет меньше абсолютной проницаемости этой породы. При этом величина эффективной (фазовой) проницаемости зависит от нефте-, газо- и водонасыщенности породы. Так, при водонасыщенности примерно 20% проницаемость породы для нефти падает, в то время как движение воды в порах почти не наблюдается. При водонасыщенности 80% движение нефти (газа) практически прекращается и фильтруется только вода.
Вывод: необходимо предохранять нефтяные пласты от преждевременного обводнения и предотвращать прорыв вод к забоям нефтяных скважин.
Некоторое влияние на относительную проницаемость различных фаз оказывают физико-химические свойства жидкостей, проницаемость пород, градиент давления.
Карбонатность нефтегазосодержащих пород - это суммарное содержание (%) солей угольной кислоты в коллекторах (СаСО3, CaMg(CO3)-2 определяется путем растворения навески породы в НСl.
Чем выше карбонатность, тем ниже проницаемость пород и в целом хуже коллекторные свойства.
По мере роста карбонатности песчаников постепенно снижается их пористость, а когда карбонатность достигает 10%, снимается и проницаемость. При карбонатности 2530% песчаники практически перестают быть поровыми коллекторами.
Удельная поверхность – отношение общей поверхности открытых поровых каналов к объему породы. Величина ее в коллекторах нефти и газа составляет десятки тысяч квадратных метров (при диаметре зерен 0,2 мм удельная поверхность превышает 20 000 м2/м2). Вследствие этого в виде пленочной нефти и конденсата в пласте остается большое количество углеводородов.
Горно-геологические параметры месторождений:
геометрия месторождения (форма, площадь и высота месторождения, расчлененность на отдельные залежи и продуктивные пласты, глубина залегания);
свойства коллекторов (емкостные - пористость, нефтенасыщенность; фильтрационные - проницаемость; литологические - гранулометрический состав, удельная поверхность, карбонатность; физические - механические, теплофизические и др.;
физико-химические свойства флюидов;
энергетическая характеристика месторождения;
величина и плотность запасов нефти.
Размеры месторождений в среднем составляют: длина 510 км, ширина 23 км, высота (этаж нефтегазоностности) 5070 м.
Нефтяные залежи составляют 61 %, нефтегазовые - 12 %, газовые и газоконденсатные - 27 %.
По величине извлекаемых запасов (млн. т) залежи нефти условно делят на мелкие (менее 10), средние (1030), крупные (30300) и уникальные (более 300).
По начальному значению дебита (т/сут) различают низко- (до 7), средне- (от 7 до 25 ), высоко- ( от 25 до 200 ) и сверхвысокодебитные (более 200) нефтяные залежи.
