
- •3 :: 4 :: Содержание
- •5 :: 6 :: Содержание
- •5 :: 6 :: Содержание
- •7 :: 8 :: 9 :: Содержание
- •Глава1. Методология изучения высшей нервной деятельности
- •§ 1. Принцип рефлекса
- •7 :: 8 :: 9 :: Содержание
- •9 :: 10 :: Содержание
- •9 :: 10 :: Содержание
- •10 :: 11 :: 12 :: Содержание
- •10 :: 11 :: 12 :: Содержание
- •12 :: 13 :: 14 :: Содержание
- •12 :: 13 :: 14 :: Содержание
- •15 :: 16 :: 17 :: Содержание
- •15 :: 16 :: 17 :: Содержание
- •17 :: 18 :: 19 :: Содержание
- •17 :: 18 :: 19 :: Содержание
- •19 :: 20 :: 21 :: 22 :: 23 :: 24 :: 25 :: 26 :: 27 :: Содержание
- •§ 2. Принцип доминанты
- •19 :: 20 :: 21 :: 22 :: 23 :: 24 :: 25 :: 26 :: 27 :: Содержание
- •27 :: 28 :: Содержание
- •§ 3. Принцип отражения
- •27 :: 28 :: Содержание
- •28 :: 29 :: 30 :: Содержание
- •28 :: 29 :: 30 :: Содержание
- •30 :: 31 :: 32 :: 33 :: Содержание
- •30 :: 31 :: 32 :: 33 :: Содержание
- •33 :: 34 :: Содержание
- •33 :: 34 :: Содержание
- •34 :: 35 :: Содержание
- •34 :: 35 :: Содержание
- •35 :: 36 :: 37 :: 38 :: 39 :: 40 :: Содержание
- •§ 4. Принцип системности в работе мозга
- •35 :: 36 :: 37 :: 38 :: 39 :: 40 :: Содержание
- •40 :: 41 :: 42 :: 43 :: 44 :: 45 :: 46 :: Содержание
- •40 :: 41 :: 42 :: 43 :: 44 :: 45 :: 46 :: Содержание
- •46 :: 47 :: 48 :: 49 :: 50 :: Содержание
- •§ 5. Основные методы нейрофизиологии поведения. Методология, метод, методика
- •46 :: 47 :: 48 :: 49 :: 50 :: Содержание
- •50 :: 51 :: 52 :: 53 :: 54 :: Содержание
- •50 :: 51 :: 52 :: 53 :: 54 :: Содержание
- •54 :: 55 :: 56 :: 57 :: 58 :: 59 :: 60 :: 61 :: 62 :: 63 :: 64 :: 65 :: Содержание
- •§ 6. Заключение
- •54 :: 55 :: 56 :: 57 :: 58 :: 59 :: 60 :: 61 :: 62 :: 63 :: 64 :: 65 :: Содержание
- •66 :: 67 :: Содержание
- •Глава 2. Сенсорная функция мозга
- •§ 7. Общие принципы конструкции сенсорных систем
- •66 :: 67 :: Содержание
- •68 :: 69 :: Содержание
- •68 :: 69 :: Содержание
- •69 :: 70 :: 71 :: Содержание
- •69 :: 70 :: 71 :: Содержание
- •71 :: 72 :: Содержание
- •71 :: 72 :: Содержание
- •72 :: 73 :: Содержание
- •72 :: 73 :: Содержание
- •73 :: Содержание
- •73 :: Содержание
- •74 :: 75 :: 76 :: 77 :: Содержание
- •§ 8. Закономерности обнаружения сигналов
- •74 :: 75 :: 76 :: 77 :: Содержание
- •77 :: 78 :: 79 :: 80 :: 81 :: Содержание
- •§ 9. Системная организация процессов кодирования информации
- •77 :: 78 :: 79 :: 80 :: 81 :: Содержание
- •82 :: 83 :: 84 :: 85 :: Содержание
- •§ 10. Распознавание, декодирование информации
- •82 :: 83 :: 84 :: 85 :: Содержание
- •85 :: 86 :: Содержание
- •§ 11. Заключение
- •85 :: 86 :: Содержание
- •87 :: 88 :: 89 :: Содержание
- •Глава 3. Регуляция произвольных движений
- •§ 12. Обратная связь в управлении движениями
- •87 :: 88 :: 89 :: Содержание
- •89 :: 90 :: Содержание
- •§ 13. Внешняя обратная связь
- •89 :: 90 :: Содержание
- •90 :: 91 :: 92 :: Содержание
- •§ 14. Внутренняя обратная связь
- •90 :: 91 :: 92 :: Содержание
- •92 :: 93 :: Содержание
- •§ 15. Медиальные лемниски
- •92 :: 93 :: Содержание
- •94 :: 95 :: 96 :: 97 :: Содержание
- •§ 16. Двигательная программа
- •94 :: 95 :: 96 :: 97 :: Содержание
- •98 :: 99 :: Содержание
- •Глава 4. Формы поведения
- •§ 17. Поведение как фактор эволюции
- •98 :: 99 :: Содержание
- •99 :: Содержание
- •99 :: Содержание
- •100 :: Содержание
- •100 :: Содержание
- •101 :: Содержание
- •101 :: Содержание
- •101 :: 102 :: 103 :: Содержание
- •101 :: 102 :: 103 :: Содержание
- •103 :: 104 :: 105 :: 106 :: Содержание
- •103 :: 104 :: 105 :: 106 :: Содержание
- •106 :: Содержание
- •106 :: Содержание
- •107 :: 108 :: Содержание
- •§ 18. Классификация форм поведения
- •107 :: 108 :: Содержание
- •108 :: 109 :: Содержание
- •108 :: 109 :: Содержание
- •109 :: 110 :: 111 :: 112 :: 113 :: 114 :: Содержание
- •109 :: 110 :: 111 :: 112 :: 113 :: 114 :: Содержание
- •114 :: 115 :: 116 :: 117 :: 118 :: Содержание
- •114 :: 115 :: 116 :: 117 :: 118 :: Содержание
- •118 :: 119 :: Содержание
- •§ 19. Формы индивидуального обучения
- •118 :: 119 :: Содержание
- •119 :: 120 :: 121 :: Содержание
- •119 :: 120 :: 121 :: Содержание
- •121 :: 122 :: Содержание
- •121 :: 122 :: Содержание
- •122 :: 123 :: 124 :: Содержание
- •122 :: 123 :: 124 :: Содержание
- •124 :: 125 :: 126 :: 127 :: Содержание
- •124 :: 125 :: 126 :: 127 :: Содержание
- •127 :: 128 :: Содержание
- •127 :: 128 :: Содержание
- •128 :: 129 :: Содержание
- •128 :: 129 :: Содержание
- •129 :: 130 :: 131 :: Содержание
- •129 :: 130 :: 131 :: Содержание
- •131 :: 132 :: 133 :: 134 :: Содержание
- •131 :: 132 :: 133 :: 134 :: Содержание
- •134 :: 135 :: 136 :: Содержание
- •134 :: 135 :: 136 :: Содержание
- •136 :: 137 :: 138 :: Содержание
- •136 :: 137 :: 138 :: Содержание
- •138 :: Содержание
- •§ 20. Эволюция форм поведения
- •138 :: Содержание
- •139 :: Содержание
- •139 :: Содержание
- •140 :: 141 :: 142 :: 143 :: 144 :: 145 :: Содержание
- •140 :: 141 :: 142 :: 143 :: 144 :: 145 :: Содержание
- •145 :: 146 :: 147 :: Содержание
- •145 :: 146 :: 147 :: Содержание
- •147 :: 148 :: 149 :: Содержание
- •147 :: 148 :: 149 :: Содержание
- •149 :: 150 :: 151 :: 152 :: Содержание
- •149 :: 150 :: 151 :: 152 :: Содержание
- •152 :: 153 :: 154 :: 155 :: 156 :: 157 :: Содержание
- •152 :: 153 :: 154 :: 155 :: 156 :: 157 :: Содержание
- •157 :: 158 :: 159 :: Содержание
- •§ 21. Формирование поведения в онтогенезе
- •157 :: 158 :: 159 :: Содержание
- •159 :: 160 :: 161 :: 162 :: Содержание
- •159 :: 160 :: 161 :: 162 :: Содержание
- •162 :: 163 :: Содержание
- •162 :: 163 :: Содержание
- •163 :: 164 :: 165 :: Содержание
- •163 :: 164 :: 165 :: Содержание
- •166 :: 167 :: Содержание
- •166 :: 167 :: Содержание
- •168 :: Содержание
- •§ 22. Заключение
- •168 :: Содержание
- •169 :: 170 :: Содержание
- •Глава 5. Факторы организации поведения
- •§ 23. Генетическая детерминация свойств поведения
- •169 :: 170 :: Содержание
- •170 :: 171 :: 172 :: 173 :: Содержание
- •170 :: 171 :: 172 :: 173 :: Содержание
- •173 :: 174 :: Содержание
- •173 :: 174 :: Содержание
- •174 :: 175 :: Содержание
- •174 :: 175 :: Содержание
- •175 :: 176 :: Содержание
- •175 :: 176 :: Содержание
- •176 :: 177 :: 178 :: Содержание
- •176 :: 177 :: 178 :: Содержание
- •178 :: 179 :: Содержание
- •178 :: 179 :: Содержание
- •179 :: 180 :: Содержание
- •179 :: 180 :: Содержание
- •181 :: 182 :: Содержание
- •181 :: 182 :: Содержание
- •182 :: 183 :: Содержание
- •§ 24. Биологические мотивации как внутренние детерминанты поведения
- •182 :: 183 :: Содержание
- •183 :: 184 :: 185 :: 186 :: Содержание
- •183 :: 184 :: 185 :: 186 :: Содержание
- •186 :: Содержание
- •186 :: Содержание
- •186 :: 187 :: 188 :: Содержание
- •186 :: 187 :: 188 :: Содержание
- •188 :: 189 :: 190 :: 191 :: 192 :: Содержание
- •188 :: 189 :: 190 :: 191 :: 192 :: Содержание
- •192 :: 193 :: Содержание
- •192 :: 193 :: Содержание
- •193 :: 194 :: 195 :: Содержание
- •193 :: 194 :: 195 :: Содержание
- •195 :: 196 :: Содержание
- •§ 25. Роль эмоций в организации поведения
- •195 :: 196 :: Содержание
- •196 :: 197 :: 198 :: Содержание
- •196 :: 197 :: 198 :: Содержание
- •198 :: 199 :: 200 :: 201 :: 202 :: 203 :: 204 :: 205 :: 206 :: 207 :: 208 :: 209 :: Содержание
- •198 :: 199 :: 200 :: 201 :: 202 :: 203 :: 204 :: 205 :: 206 :: 207 :: 208 :: 209 :: Содержание
- •209 :: 210 :: Содержание
- •209 :: 210 :: Содержание
- •211 :: 212 :: Содержание
- •§ 26. Восприятие пространства и пространственная ориентация
- •211 :: 212 :: Содержание
- •212 :: 213 :: 214 :: Содержание
- •212 :: 213 :: 214 :: Содержание
- •214 :: 215 :: Содержание
- •214 :: 215 :: Содержание
- •215 :: 216 :: 217 :: Содержание
- •215 :: 216 :: 217 :: Содержание
- •217 :: 218 :: 219 :: 220 :: Содержание
- •217 :: 218 :: 219 :: 220 :: Содержание
- •220 :: 221 :: 222 :: Содержание
- •§ 27. Время как фактор организации поведения
- •220 :: 221 :: 222 :: Содержание
- •222 :: 223 :: Содержание
- •222 :: 223 :: Содержание
- •223 :: 224 :: 225 :: Содержание
- •223 :: 224 :: 225 :: Содержание
- •225 :: 226 :: 227 :: 228 :: 229 :: Содержание
- •225 :: 226 :: 227 :: 228 :: 229 :: Содержание
- •229 :: 230 :: 231 :: Содержание
- •229 :: 230 :: 231 :: Содержание
- •231 :: 232 :: 233 :: Содержание
- •231 :: 232 :: 233 :: Содержание
- •233 :: 234 :: Содержание
- •§ 28. Заключение
- •233 :: 234 :: Содержание
- •235 :: 236 :: 237 :: Содержание
- •Глава 6.
- •235 :: 236 :: 237 :: Содержание
- •237 :: 238 :: Содержание
- •§ 30. Условные рефлексы
- •237 :: 238 :: Содержание
- •238 :: 239 :: Содержание
- •238 :: 239 :: Содержание
- •239 :: 240 :: Содержание
- •239 :: 240 :: Содержание
- •240 :: 241 :: 242 :: 243 :: 244 :: 245 :: 246 :: 247 :: 248 :: Содержание
- •240 :: 241 :: 242 :: 243 :: 244 :: 245 :: 246 :: 247 :: 248 :: Содержание
- •248 :: 249 :: Содержание
- •§ 31. Торможение условных рефлексов
- •248 :: 249 :: Содержание
- •249 :: 250 :: 251 :: Содержание
- •249 :: 250 :: 251 :: Содержание
- •251 :: 252 :: Содержание
- •251 :: 252 :: Содержание
- •252 :: 253 :: 254 :: 255 :: 256 :: 257 :: 258 :: 259 :: Содержание
- •252 :: 253 :: 254 :: 255 :: 256 :: 257 :: 258 :: 259 :: Содержание
- •259 :: 260 :: Содержание
- •259 :: 260 :: Содержание
- •260 :: 261 :: Содержание
- •§ 32. Заключение
- •260 :: 261 :: Содержание
- •262 :: 263 :: 264 :: 265 :: 266 :: 267 :: Содержание
- •Глава 7. Механизмы формирования условных рефлексов
- •§ 33. Конвергентная теория формирования временных связей
- •262 :: 263 :: 264 :: 265 :: 266 :: 267 :: Содержание
- •267 :: 268 :: 269 :: 270 :: 271 :: 272 :: 273 :: 274 :: 275 :: 276 :: Содержание
- •§ 34. Клеточные аналоги условного рефлекса
- •267 :: 268 :: 269 :: 270 :: 271 :: 272 :: 273 :: 274 :: 275 :: 276 :: Содержание
- •276 :: 277 :: 278 :: 279 :: 280 :: 281 :: 282 :: 283 :: 284 :: Содержание
- •§ 35. Нейронная организация условнорефлекторного процесса
- •276 :: 277 :: 278 :: 279 :: 280 :: 281 :: 282 :: 283 :: 284 :: Содержание
- •284 :: 285 :: 286 :: 287 :: 288 :: 289 :: Содержание
- •284 :: 285 :: 286 :: 287 :: 288 :: 289 :: Содержание
- •289 :: 290 :: 291 :: 292 :: 293 :: 294 :: Содержание
- •289 :: 290 :: 291 :: 292 :: 293 :: 294 :: Содержание
- •295 :: 296 :: 297 :: 298 :: 299 :: 300 :: Содержание
- •§ 36. Нейронная организация условного торможения
- •295 :: 296 :: 297 :: 298 :: 299 :: 300 :: Содержание
- •300 :: 301 :: 302 :: 303 :: 304 :: Содержание
- •300 :: 301 :: 302 :: 303 :: 304 :: Содержание
- •304 :: 305 :: Содержание
- •§ 37. Заключение
- •304 :: 305 :: Содержание
- •306 :: 307 :: 308 :: 309 :: Содержание
- •Глава 8. Механизмы памяти
- •§ 38. Виды и формы памяти
- •306 :: 307 :: 308 :: 309 :: Содержание
- •309 :: 310 :: 311 :: 312 :: Содержание
- •309 :: 310 :: 311 :: 312 :: Содержание
- •312 :: 313 :: 314 :: 315 :: 316 :: 317 :: 318 :: 319 :: 320 :: 321 :: Содержание
- •§ 39. Механизмы кратковременной памяти
- •312 :: 313 :: 314 :: 315 :: 316 :: 317 :: 318 :: 319 :: 320 :: 321 :: Содержание
- •322 :: 323 :: Содержание
- •§ 40. Механизмы долговременной памяти
- •322 :: 323 :: Содержание
- •323 :: 324 :: 325 :: 326 :: 327 :: Содержание
- •323 :: 324 :: 325 :: 326 :: 327 :: Содержание
- •327 :: 328 :: 329 :: 330 :: 331 :: Содержание
- •327 :: 328 :: 329 :: 330 :: 331 :: Содержание
- •331 :: 332 :: 333 :: Содержание
- •331 :: 332 :: 333 :: Содержание
- •333 :: Содержание
- •§ 41. Заключение
- •333 :: Содержание
- •334 :: 335 :: 336 :: Содержание
- •Глава 9. Интегративная деятельность мозга
- •§ 42. Доминанта и условный рефлекс как основные принципы интегративной деятельности мозга
- •334 :: 335 :: 336 :: Содержание
- •336 :: 337 :: 338 :: 339 :: 340 :: Содержание
- •336 :: 337 :: 338 :: 339 :: 340 :: Содержание
- •340 :: 341 :: 342 :: 343 :: 344 :: 345 :: Содержание
- •340 :: 341 :: 342 :: 343 :: 344 :: 345 :: Содержание
- •345 :: 346 :: 347 :: Содержание
- •§ 43. Высшие интегративные системы мозга
- •345 :: 346 :: 347 :: Содержание
- •347 :: 348 :: Содержание
- •347 :: 348 :: Содержание
- •348 :: 349 :: 350 :: Содержание
- •348 :: 349 :: 350 :: Содержание
- •350 :: 351 :: 352 :: Содержание
- •350 :: 351 :: 352 :: Содержание
- •352 :: 353 :: 354 :: 355 :: 356 :: 357 :: 358 :: Содержание
- •352 :: 353 :: 354 :: 355 :: 356 :: 357 :: 358 :: Содержание
- •358 :: 359 :: 360 :: Содержание
- •358 :: 359 :: 360 :: Содержание
- •360 :: 361 :: 362 :: 363 :: 364 :: 365 :: 366 :: 367 :: Содержание
- •§ 44. Ассоциативные системы и сенсорная функция мозга
- •360 :: 361 :: 362 :: 363 :: 364 :: 365 :: 366 :: 367 :: Содержание
- •367 :: 368 :: 369 :: 370 :: Содержание
- •§ 45. Ассоциативные системы мозга и программирование поведения
- •367 :: 368 :: 369 :: 370 :: Содержание
- •370 :: 371 :: 372 :: 373 :: Содержание
- •370 :: 371 :: 372 :: 373 :: Содержание
- •373 :: 374 :: 375 :: 376 :: 377 :: Содержание
- •373 :: 374 :: 375 :: 376 :: 377 :: Содержание
- •377 :: 378 :: Содержание
- •§ 46. Заключение
- •377 :: 378 :: Содержание
- •379 :: 380 :: 381 :: 382 :: 383 :: 384 :: 385 :: 386 :: 387 :: 388 :: Содержание
- •Глава 10 психофизиологическая проблема
- •379 :: 380 :: 381 :: 382 :: 383 :: 384 :: 385 :: 386 :: 387 :: 388 :: Содержание
- •389 :: 390 :: Содержание
- •389 :: 390 :: Содержание
- •390 :: 391 :: Содержание
- •390 :: 391 :: Содержание
- •391 :: 392 :: Содержание
- •391 :: 392 :: Содержание
- •392 :: 393 :: Содержание
- •392 :: 393 :: Содержание
- •393 :: 394 :: 395 :: Содержание
- •393 :: 394 :: 395 :: Содержание
- •396 :: 397 :: 398 :: Содержание
- •396 :: 397 :: 398 :: Содержание
- •399 :: 400 :: 401 :: 402 :: Содержание
- •399 :: 400 :: 401 :: 402 :: Содержание
323 :: 324 :: 325 :: 326 :: 327 :: Содержание
327 :: 328 :: 329 :: 330 :: 331 :: Содержание
Информационные макромолекулы.
Участие нуклеиновых кислот и белков в ключевых процессах обучения и памяти не вызывает сомнений. Теоретические представления подразделяются на две группы. Согласно первой группе гипотез обучение и память связаны с кодированием приобретенных форм поведения в информационных макромолекулах. Согласно второй группе гипотез, исходящей из взаимосвязи генома и синтеза специфических белков нервной клетки, на основе функционального объединения нейронов возникает структурное их объединение, представляющее собой энграмму памяти.
Первая группа гипотез о кодировании индивидуального опыта в макромолекулах базируется на следующих аргументах: качественном изменении РНК и белков при обучении и возможности "переноса памяти" от обученного мозга к необученному с помощью РНК или полипептидов.
X. Хиден (1967) считал, что под влиянием приходящей к нейрону импульсации происходит перегруппировка оснований в молекуле РНК, что приводит к синтезу на такой ядерной РНК молекул белка измененной структуры, обусловливающих избирательную чувствительность нейрона именно к данной конфигурации импульсов. Наряду с этим при обучении были описаны синтез полипептидов (Г. Унгар, 1973) и избирательный синтез мозгоспецифических белков. Много работ, в которых исследуют участие РНК в процессах памяти, не позволяют снять целый ряд принципиальных вопросов, и поэтому нельзя исключить неспецифический характер участия нуклеотидов. Так оказалось, что введение животным стимуляторов или ингибиторов синтеза РНК отражается в первую очередь на выработке новых навыков, а не на их сохранении. Пока не получено ни одного убедительного аргумента в пользу признания определяющей роли макромолекул в кодировании индивидуального опыта.
327
Особо стоит вопрос о так называемом "переносе памяти". Подобного рода исследования на беспозвоночных (планарии, Д. Мак-Кеннел, 1959) и млекопитающих (белые крысы, Г. Унгар, 1965) в свое время носили сенсационный характер. Но при их тщательном анализе оказалось, что они содержат ряд методических погрешностей, существенно снижающих их доказательную силу. Вместе с этим нельзя не считаться с достаточно убедительными наблюдениями о наличии стимулирующего влияния экстракта мозга или ликвора обученных доноров на способность к обучению у реципиентов. Видимо, существует какой-то химический фактор, обеспечивающий не прямой "перенос памяти", а облегчающий формирование соответствующего навыка у животных-реципиентов. Г. Адам (1983) на основании своих исследований также приходит к выводу о неспецифическом стимулирующем эффекте экстракта мозга, отвергая за ним функцию "кода памяти".
В последнее время описаны факты прямого переноса условного сахаринового отвращения у крыс (Г.А. Вартанян, 1986). У одной группы крыс вырабатывали отвращение к сахариновому раствору при сочетаниях питья этого раствора с введением животным хлорида лития, приводящего к интестинальному шоку. Ликвор обученных животных вводили субокципитально реципиентам, у которых достоверно снизилось потребление сахаринового раствора.
Другой формой "транспорта памяти" является перенос импринтинга у цыплят. Получены некоторые данные, свидетельствующие об олигопептидной природе вещества-переносчика, а также о быстром включении этого вещества в формирование нового навыка у реципиента (Г.А. Вартанян, М.И. Лохов, 1987).
Для трактовки механизмов "переноса" может быть использована гипотеза об участии иммунологических механизмов в долговременной памяти (И.П. Ашмарин, 1975). Если представить себе, что после прохождения импульсов через синапс усиливается синтез специфических белков-антигенов, то их избыток должен выходить в околосинаптическое пространство. Эти белки взаимодействуют с рядом расположенными клонами клеток
328
астроцитарной глии и индуцируют их размножение и образование антител. Последние специфически взаимодействуют с постсинаптическими мембранами тех же нейронов и облегчают проводимость в соответствующих синапсах. Данный клон астроцитов сохраняется в течение жизни. В свете данной гипотезы действующим началом "переноса памяти" может быть избыточный антиген пептидной природы, который способен автоматически найти в мозге реципиента либо соответствующую клетку глии, либо синапс.
Существует большое число данных, свидетельствующих о том, что полноценный белковый синтез в мозге необходим для процесса консолидации и формирования долговременной памяти. Причем при глубоком угнетении белкового синтеза и относительно кратковременном обучении наблюдается сохранение выработанных рефлексов через минуты или часы обучения. Но уже через часы и сутки после обучения выявляются глубокие нарушения в сохранении выработанных навыков. Следовательно, процессы белкового синтеза не нужны в ближайшее время после обучения, они понадобятся значительно позже на этапе консолидации энграммы. Детальный анализ содержания белков в коре мозга обнаружил, что при формировании новой двигательной координации, связанной с предпочтением одной конечности у крыс, в сенсомоторной коре возникает выраженная асимметрия в содержании белков в крупных пирамидных нейронах.
Убедительные данные об участии в функциях памяти получены для двух мозгоспецифических белков S-100 и 14-3-2 (X. Хиден). Первый - активно взаимодействует с мембраной и сократительными белками нейрона при участии нейронов кальция. Второй является ферментативным белком, участвующим в реакциях гликолиза в нейронах. Было обнаружено максимальное содержание в гиппокампе белка S-100 на 4-5-й дни обучения параллельно увеличению ионов кальция. В сравнении с этим Хиден показал, что консолидация памятного следа сопровождается накоплением белка 14-3-2 прежде всего в коре мозга, а не в гиппокампе. Ряд авторов вообще рассматривают S-100 как преимущественно глиальный белок, и лишь белок 14-3-2 связывают со специфическими
329
процессами сохранения энграммы. А уровень белка S-100 отражает неспецифическую реакцию мозга на усиленное функционирование церебральных структур.
Для создания устойчивости образованной энграммы должна существовать система обновления специфических рецепторных белков, которая включает участки генома, ответственные за синтез соответствующих белков. Либо должны возникать стабильные модификации ДНК, в результате которых в нейроне возникает и поддерживается пожизненно синтез любого нейроспецифического белка или, наоборот, выключается необратимо синтез маскирующего белка. Г. Линч и М. Бодри (1984) выдвинули гипотезу, сущность которой состоит в следующем. Повторная импульсация в нейроне сопровождается увеличением концентрации кальция в постсинаптической мембране. Это активирует фермент - кальцийзависимую протеиназу, которая расщепляет один из белков мембраны. Его расщепление освобождает замаскированные ранее неактивные белковые глутаматрецепторы. Число активных глутаматрецепторов возрастает, и возникает состояние повышенной проводимости синапса длительностью 3-6 сут.
Эта гипотеза имеет много прямых и косвенных доказательств в свою пользу. Она привлекает внимание тем, что позволяет рассматривать структурную ансамблевую организацию энграммы и при этом учитывает такой важный компонент нейронной конструкции, как дендритные шипики с их белковым цитоскелетом. Аксошипиковые контакты - наиболее пластичное соединение между нейронами, которое может быть ответственно за эффективность синаптической передачи. Если представить себе, как показали многие авторы, что количество самих шипиков и синапсов на них увеличивается в онтогенезе и прямо зависит от накопления индивидуального опыта, то есть от образования энграмм памяти, то их использование по поводу новых поведенческих задач и в составе новых обширных констелляций должно подразумевать наличие соответствующих механизмов. С одной стороны, синаптическое соединение с шипиком является структурно достаточно стабильным, ибо сохраняет свою целостность при центрифугировании
330
синаптосомальных фракций, с другой - функционально весьма подвижным. Последнее может достигаться с помощью механизма изменения диаметра ножки шипика, который, в свою очередь, меняет сопротивление мембраны. Это может обеспечиваться наличием контрактильного аппарата в ножке шипика, который представлен молекулами белка актомиозина. Активация этих молекул может возникать при высвобождении ионов кальция из депо, коим является содержащийся в головке шипиковый аппарат - эндоплазматический ретикулум. Высвобождение ионов кальция происходит при действии медиатора на постсинаптическую мембрану. Сокращение молекулы актомиозина приводит к укорочению и утолщению ножки шипика, в результате чего меняется сопротивление и проведение электрического тока к дендритному стволу. Эти представления носят еще весьма гипотетический характер (А.С. Батуев, В.П. Бабминдра, 1984). Значение их в том, что они обращают внимание на построение многонейронной энграммы и на наличие внутрисинаптического цитоскелетного белкового комплекса регуляции синаптической эффективности.
331