
- •4. Классы неорганических соединений.
- •Получение
- •Химические свойства
- •Химические свойства
- •5) Модель строения атома Резерфорда
- •6) Модель строения атома Бора
- •7)Принципы квантово-механической модели.
- •8) Уравнение Шредингера. Основные идеи, положения, и его основу.
- •10)Понятие электронного уровня, орбитали, подуровня.
- •Принцип исключения Паули (запрет Паули)
- •Принцип наименьшей энергии
- •Правило Клечковского
- •Правило Гунда
- •13) Периодический закон Менделеева. Периодичность в изменении различных свойств элементов.
- •14) Сходство и различие химических свойств элементов главных и побочных подгрупп.
- •15) Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи.
- •16) Природа химической связи. Энергетические эффекты в процессе образования химической связи.
- •17) Основные положения метода валентных связей. Обменный и донорно-акцепторный механизмы образования ковалентной связи.
- •18) Валентные возможности атомов элементов в основном и возбужденном состоянии.
- •21) Полярность ковалентной связи. Теория гибридизации. Виды гибридизации. Примеры.
- •22) Полярность ковалентной связи. Дипольный момент.
- •23) Достоинства и недостатки метода в.С.
- •26) Ионная связь как предельный случай ковалентной полярной связи. Свойства ионной связи. Основные виды решеток для соединений с ионной связью.
- •27) Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
- •28)Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
- •29) Водородная связь.
- •30) Основные типы кристаллических решеток.
- •31) Законы термохимии. Закон Гесса.
- •32) Понятие о внутренней энергии системы, энтальпии, энтропии.
- •33) Энергия Гиббса, ее взаимосвязь с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
- •34) Скорость химических реакций. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
- •35) Факторы, влияющие на скорость химической реакции.
- •36) Влияние температуры на скорость химических реакций. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- •37) Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
- •38) Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
- •39) Обратимые процессы. Химическое равновесие. Константа равновесия.
- •40)Влияние различных факторов на смещение равновесия. Принцип Ле-Шателье.
- •41) Определение раствора. Физико-химические процессы при образовании растворов. Изменение энтальпии и энтропии при растворении.
- •42) Способы выражения концентрации растворов.
- •43) Закон Рауля
- •44) Осмос. Осмотическое давление. Закон Вант-Гоффа
- •45) Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотопический коэффициент.
- •46) Теория электролитической диссоциации. Физическая теория Аррениуса, химическая теория Менделеева и современный взгляд на диссоциацию.
- •47) Реакция в растворах, их направленность. Смещение ионных равновесий.
- •48) Ионное произведение воды. Водородный показатель как химический показатель раствора.
- •49)Гетерогенные равновесия в растворах электролитов. Произведение растворимости.
- •50) Гидролиз солей, его зависимость от температуры, разбавления и природы солей (три типичных случая) Константа гидролиза. Практическое значение в процессе коррозии металла.
- •51) Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
- •52) Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нернста.
- •53) Гальванические элементы. Процессы на электродах. Эдс гальванического элемента.
- •54) Обратимые источники электрической энергии. Кислотные и щелочные аккумуляторы.
- •55) Топливные элементы.
- •1) Активные металлы
- •2) Менее активные металлы
- •3) Неактивные металлы
1) Активные металлы
1.Соль активного металла и бескислородной кислоты
NaCl ↔ Na+ + Cl−
K"катод"(-): 2H2O + 2e = H2 + 2OH−
A"анод"(+): Cl− — 1e = Cl0; Cl0+Cl0=Cl2
Вывод: 2NaCl + 2H2O(электролиз) → H2 + Cl2 +2NaOH
2.Соль активного металла и кислородсодержащей кислоты
Na2SO4↔2Na++SO42−
K(-): 2H2O + 2e = H2 + 2OH−
A(+): 2H2O — 4e = O2 + 4H+
Вывод: 2H2O (электролиз) → 2H2 + O2
3. Гидроксид: активный металл и гидроксид-ион
NaOH ↔ Na+ + OH−
K(-): 2H2O + 2e = H2 + 2OH−
A(+): 2H2O — 4e = O2 + 4Н+
Вывод: 2H2O (электролиз) → 2H2 + O2
2) Менее активные металлы
1.Соль менее активного металла и бескислородной кислоты
ZnCl2 ↔ Zn2+ + 2Cl−
K"катод"(-): Zn2+ + 2e = Zn0
A"анод"(+): 2Cl− — 2e = 2Cl0
Вывод: ZnCl2 (электролиз) → Zn + Cl2
2.Соль менее активного металла и кислородсодержащей кислоты
ZnSO4 ↔ Zn2++SO42−
K(-): Zn2+ + 2e = Zn0
A(+): 2H2O — 4e = O2 + 4Н+
Вывод: 2ZnSO4 + 2H2O(электролиз) → 2Zn + 2H2SO4 + O2
3. Гидроксид: невозможно (нерастворим)
3) Неактивные металлы
Точно так же
Последовательность электродных процессов. Если в электролите присутствуют несколько видов частиц, то возможно протекание нескольких электродных реакций. На катоде в первую очередь протекает процесс восстановления наиболее сильного окислителя, т.е. окислителя с наиболее положительным потенциалом. Последовательность восстановления окислителей можно оценить на основе значений стандартных восстановительных потенциалов соединений.
На аноде в первую очередь протекает процесс окисления наиболее сильного восстановителя, т.е. восстановителя с наиболее отрицательным потенциалом. Если материал анода имеет потенциал более отрицательный, чем потенциал окисления гидроксид-ионов до свободного кислорода, то происходит растворение анода и эта разновидность электролиза называется электролизом с растворимым анодом. В качестве нерастворимых анодов используют материалы с большими положительными восстановительными потенциалами (Pt, Au, C) или металлы с высокими значениями анодной поляризации (Ta, Ti, Fe в щелочной среде и др.).
Перенапряжение электрохимическое, отклонение электродного потенциала от его равновесного (по отношению к приэлектродному составу раствора) термодинамического значения при поляризации электрода внешним током. При заметном удалении от равновесия П. (h) и плотность поляризующего тока (i) обычно связаны соотношением h = а + b lg i (уравнение Тафеля), где а и b ‒ эмпирические постоянные. П. зависит от температуры, природы электродного материала и состава раствора. П. необходимо для ускорения нужной электродной реакции. Если скорость электродной реакции в целом определяется скоростью собственно электрохимической стадии, связанной с переносом заряда, то П. усиливает электрическое поле, действующее на разряжающиеся частицы, благодаря чему снижается энергия активации разряда.
Поляризация электрохимическая — отклонение потенциала электрода от равновесного значения. На электроде гальванического элемента, находящемся в равновесии, постоянно протекают химические реакции (см. Ток обмена). Если начать поляризацию электрода(например, повышая или понижая его потенциал, что вызывает прохождение электрического тока через границу раздела электрод — раствор), то, после определённого периода протекания неравновесных процессов, строение двойного электрического слоя изменится. При этом, в соответствии с поляризационной кривой, изменится и электродный потенциал рассматриваемого электрода. Отклонение потенциала от равновесного под действием внешнего потенциала (или при протекании тока) называется электрохимической поляризацией электрода.
Величина отклонения потенциала электрода от равновесного значения называется перенапряжением. Исследование перенапряжения позволяет понять механизмы электрохимических реакций в данной системе. Оно проводится с помощью потенциостатов, также используется осциллография, метод вращающегося дискового электрода.
Природа поляризации
Поляризация связана с торможением тех или иных процессов на электроде:
диффузионное перенапряжение связано с медленной диффузией ионов и др. веществ в зоне электрода
перенапряжение замедленного разряда обусловлено медленностью собственно электрохимической стадии разряда ионов на электроде
57) Me+ HCL (Металл плюс кислота – для всех процессов металл выполняет функцию восстановителя, катион водорода окислитель)
58)
59-60-см подсказки.
61) Коррозия приводит ежегодно к миллиардным убыткам, и разрешение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики. Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери. Это простои оборудования при замене прокоррозировавших деталей и узлов, утечка продуктов, нарушение технологических процессов. Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материалов и способом их нанесения. [3]. Наиболее производительным и эффективным методом подготовки поверхности перед дальнейшей защитой субстрата является абразивоструйная очистка[4].
Обычно выделяют три направления методов защиты от коррозии:
Конструкционный
Активный
Пассивный
Для предотвращения коррозии в качестве конструкционных материалов применяют нержавеющие стали, кортеновские стали, цветные металлы. При проектировании конструкции стараются максимально изолировать от попадания коррозионной среды, применяя клеи, герметики, резиновые прокладки.
Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя. Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла. Другой метод - использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие.
В качестве защиты от коррозии может применяться нанесение какого-либо покрытия, которое препятствует образованию коррозионного элемента (пассивный метод).
Красочное покрытие, полимерное покрытие и эмалирование должны, прежде всего, предотвратить доступ кислорода и влаги. Часто также применяется покрытие, например, стали другими металлами, такими как цинк, олово, хром, никель. Цинковое покрытие защищает сталь даже когда покрытие частично разрушено. Цинк имеет более отрицательный потенциал и коррозирует первым. Ионы Zn2+ токсичны. При изготовлении консервных банок применяют жесть, покрытую слоем олова. В отличие от оцинкованной жести, при разрушении слоя олова коррозировать, притом усиленно, начинает железо, так как олово имеет более положительный потенциал. Другая возможность защитить металл от коррозии — применение защитного электрода с большим отрицательным потенциалом, например, из цинка или магния.
Для этого специально создаётся коррозионный элемент. Защищаемый металл выступает в роли катода, и этот вид защиты называют катодной защитой. Растворяемый электрод, называют, соответственно, анодом протекторной защиты. Этот метод применяют для защиты от коррозии морских судов, мостов, котельных установок, расположенных под землей труб. Для защиты корпуса судна на наружную сторону корпуса крепят цинковые пластинки.
Если сравнить потенциалы цинка и магния с железом, они имеют более отрицательные потенциалы. Но тем не менее коррозируют они медленнее вследствие образования на поверхности защитной оксидной плёнки, которая защищает металл от дальнейшей коррозии. Образование такой плёнки называют пассивацией металла. У алюминия её усиливают анодным окислением (анодирование). При добавлении небольшого количества хрома в сталь на поверхности металла образуется оксидная плёнка. Содержание хрома в нержавеющей стали — более 12 процентов.