
- •4. Классы неорганических соединений.
- •Получение
- •Химические свойства
- •Химические свойства
- •5) Модель строения атома Резерфорда
- •6) Модель строения атома Бора
- •7)Принципы квантово-механической модели.
- •8) Уравнение Шредингера. Основные идеи, положения, и его основу.
- •10)Понятие электронного уровня, орбитали, подуровня.
- •Принцип исключения Паули (запрет Паули)
- •Принцип наименьшей энергии
- •Правило Клечковского
- •Правило Гунда
- •13) Периодический закон Менделеева. Периодичность в изменении различных свойств элементов.
- •14) Сходство и различие химических свойств элементов главных и побочных подгрупп.
- •15) Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи.
- •16) Природа химической связи. Энергетические эффекты в процессе образования химической связи.
- •17) Основные положения метода валентных связей. Обменный и донорно-акцепторный механизмы образования ковалентной связи.
- •18) Валентные возможности атомов элементов в основном и возбужденном состоянии.
- •21) Полярность ковалентной связи. Теория гибридизации. Виды гибридизации. Примеры.
- •22) Полярность ковалентной связи. Дипольный момент.
- •23) Достоинства и недостатки метода в.С.
- •26) Ионная связь как предельный случай ковалентной полярной связи. Свойства ионной связи. Основные виды решеток для соединений с ионной связью.
- •27) Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
- •28)Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
- •29) Водородная связь.
- •30) Основные типы кристаллических решеток.
- •31) Законы термохимии. Закон Гесса.
- •32) Понятие о внутренней энергии системы, энтальпии, энтропии.
- •33) Энергия Гиббса, ее взаимосвязь с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
- •34) Скорость химических реакций. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
- •35) Факторы, влияющие на скорость химической реакции.
- •36) Влияние температуры на скорость химических реакций. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- •37) Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
- •38) Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
- •39) Обратимые процессы. Химическое равновесие. Константа равновесия.
- •40)Влияние различных факторов на смещение равновесия. Принцип Ле-Шателье.
- •41) Определение раствора. Физико-химические процессы при образовании растворов. Изменение энтальпии и энтропии при растворении.
- •42) Способы выражения концентрации растворов.
- •43) Закон Рауля
- •44) Осмос. Осмотическое давление. Закон Вант-Гоффа
- •45) Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотопический коэффициент.
- •46) Теория электролитической диссоциации. Физическая теория Аррениуса, химическая теория Менделеева и современный взгляд на диссоциацию.
- •47) Реакция в растворах, их направленность. Смещение ионных равновесий.
- •48) Ионное произведение воды. Водородный показатель как химический показатель раствора.
- •49)Гетерогенные равновесия в растворах электролитов. Произведение растворимости.
- •50) Гидролиз солей, его зависимость от температуры, разбавления и природы солей (три типичных случая) Константа гидролиза. Практическое значение в процессе коррозии металла.
- •51) Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
- •52) Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нернста.
- •53) Гальванические элементы. Процессы на электродах. Эдс гальванического элемента.
- •54) Обратимые источники электрической энергии. Кислотные и щелочные аккумуляторы.
- •55) Топливные элементы.
- •1) Активные металлы
- •2) Менее активные металлы
- •3) Неактивные металлы
55) Топливные элементы.
Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.
Топливный элементы осуществляют прямое превращение энергии топлива в электричество минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию.
Естественным топливным элементом является митохондрия. Митохондрия окисляет горючее (углеводы, белки, жиры) до углекислого газа и воды, создавая разность электрических потенциалов на своих мембранах. Создание искусственной митохондрии, окисляющей сахар — важнейшая инженерная задача.
Применение топливных элементов
Стационарные приложения
производство электрической энергии (на электрических станциях),
аварийные источники энергии,
автономное электроснабжение,
Транспорт
электромобили, автотранспорт,
морской транспорт,
железнодорожный транспорт, горная и шахтная техника
вспомогательный транспорт (складские погрузчики, аэродромная техника и т. д.)
Бортовое питание
авиация, космос,
подводные лодки, морской транспорт,
Мобильные устройства
портативная электроника,
питание сотовых телефонов,
зарядные устройства для армии,
роботы.
56)Электролиз растворов и расплавов. Последовательность электродных процессов. Перенапряжение и поляризация.
Электролиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.
Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами — проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом — отрицательный. Положительные ионы — катионы — (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы — анионы — (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.
Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений, диоксида марганца[2], пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция, электрорафинирование).
Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).
Расплавы
1) Активные металлы
1.Соль активного металла и бескислородной кислоты
NaCl ↔ Na+ + Cl−
K"катод"(-): Na+ + 1e = Na0
A"анод"(+): Cl− — 1e = Cl0; Cl0+Cl0=Cl2
Вывод: 2NaCl → (электролиз) 2Na + Cl2
2.Соль активного металла и кислородосодержащей кислоты
Na2SO4↔2Na++SO42−
K(-): 2Na+ +2e =2Na0
A(+): 2SO42− −4e =2SO3+O2
Вывод: 2Na2SO4 → (электролиз) 4Na + 2SO3 + O2
3. Гидроксид: активный металл и гидроксид-ион
NaOH ↔ Na+ + OH−
K(-): Na+ +1e =Na0
A(+): 4OH− −4e =2H2O + O2
Вывод: 4NaOH → (электролиз) 4Na + 2H2O + O2
2) Менее активные металлы
Точно так же
3) Неактивные металлы
Точно так же
Растворы