
- •4. Классы неорганических соединений.
- •Получение
- •Химические свойства
- •Химические свойства
- •5) Модель строения атома Резерфорда
- •6) Модель строения атома Бора
- •7)Принципы квантово-механической модели.
- •8) Уравнение Шредингера. Основные идеи, положения, и его основу.
- •10)Понятие электронного уровня, орбитали, подуровня.
- •Принцип исключения Паули (запрет Паули)
- •Принцип наименьшей энергии
- •Правило Клечковского
- •Правило Гунда
- •13) Периодический закон Менделеева. Периодичность в изменении различных свойств элементов.
- •14) Сходство и различие химических свойств элементов главных и побочных подгрупп.
- •15) Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи.
- •16) Природа химической связи. Энергетические эффекты в процессе образования химической связи.
- •17) Основные положения метода валентных связей. Обменный и донорно-акцепторный механизмы образования ковалентной связи.
- •18) Валентные возможности атомов элементов в основном и возбужденном состоянии.
- •21) Полярность ковалентной связи. Теория гибридизации. Виды гибридизации. Примеры.
- •22) Полярность ковалентной связи. Дипольный момент.
- •23) Достоинства и недостатки метода в.С.
- •26) Ионная связь как предельный случай ковалентной полярной связи. Свойства ионной связи. Основные виды решеток для соединений с ионной связью.
- •27) Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
- •28)Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
- •29) Водородная связь.
- •30) Основные типы кристаллических решеток.
- •31) Законы термохимии. Закон Гесса.
- •32) Понятие о внутренней энергии системы, энтальпии, энтропии.
- •33) Энергия Гиббса, ее взаимосвязь с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
- •34) Скорость химических реакций. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
- •35) Факторы, влияющие на скорость химической реакции.
- •36) Влияние температуры на скорость химических реакций. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- •37) Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
- •38) Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
- •39) Обратимые процессы. Химическое равновесие. Константа равновесия.
- •40)Влияние различных факторов на смещение равновесия. Принцип Ле-Шателье.
- •41) Определение раствора. Физико-химические процессы при образовании растворов. Изменение энтальпии и энтропии при растворении.
- •42) Способы выражения концентрации растворов.
- •43) Закон Рауля
- •44) Осмос. Осмотическое давление. Закон Вант-Гоффа
- •45) Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотопический коэффициент.
- •46) Теория электролитической диссоциации. Физическая теория Аррениуса, химическая теория Менделеева и современный взгляд на диссоциацию.
- •47) Реакция в растворах, их направленность. Смещение ионных равновесий.
- •48) Ионное произведение воды. Водородный показатель как химический показатель раствора.
- •49)Гетерогенные равновесия в растворах электролитов. Произведение растворимости.
- •50) Гидролиз солей, его зависимость от температуры, разбавления и природы солей (три типичных случая) Константа гидролиза. Практическое значение в процессе коррозии металла.
- •51) Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
- •52) Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нернста.
- •53) Гальванические элементы. Процессы на электродах. Эдс гальванического элемента.
- •54) Обратимые источники электрической энергии. Кислотные и щелочные аккумуляторы.
- •55) Топливные элементы.
- •1) Активные металлы
- •2) Менее активные металлы
- •3) Неактивные металлы
37) Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
Химические реакции, протекающие на границе раздела двух фаз, называют гетерогенными. Гетерогенные процессы широко распространены в природе и часто используются в практике. Примерами могут служить процессы растворения, кристаллизации, испарения, конденсации, химические реакции на границе раздела двух фаз,гетерогенный катализ и др. Трудность изучения гетерогенных реакций обусловлена природой твердых тел (для одной и той же системы скорость процесса зависит от структуры твердого вещества, наличия дефектов в кристаллической решетке и содержания различных примесей). В гетерогенных реакциях, как правило, можно выделить, по меньшей мере, три стадии: перенос реагирующих веществ к поверхности раздела фаз, т.е. в реакционную зону; собственно химическое взаимодействие; перенос продуктов реакции из реакционной зоны.
Скорость всего процесса определяется лимитирующей (самой медленной) стадией. Если скорость собственно химического взаимодействия значительно больше скорости подвода реагентов к реакционной зоне и отвода продуктов от нее, то общая скорость процесса будет соответствовать скорости переноса реагентов и продуктов, и для самопроизвольных термически инициируемых реакций она будет определяться процессами диффузии веществ. В этом случае говорят, что реакция протекает в диффузионном режиме или находится в диффузионной области.
Диффузия — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму.
В общем случае скорость гетерогенной реакции зависит от: а) скорости подвода реагентов к границе раздела фаз; б) скорости реакции на поверхности раздела фаз, которая зависит от площади этой поверхности; в) скорости отвода продуктов реакции от границы раздела фаз.
Стадии (а) и (в) называются диффузионными, (см. словарь терминов) а стадия (б) – кинетической. Та стадия, которая протекает наиболее медленно, называется лимитирующей – именно она определяет скорость реакции в целом.
Универсального выражения для скорости гетерогенных реакций не существует, поскольку каждая из стадий (а-в) при определенных условиях может быть лимитирующей. Но в некоторых случаях, когда диффузионные стадии заведомо не являются лимитирующими из-за активного перемешивания реагентов, а площадь поверхности раздела фаз меняется медленно, можно экспериментально получить кинетические уравнения типа (2), удовлетворительно описывающие протекание гетерогенных реакций. Это имеет важное значение для химического производства, где большинство используемых реакций – гетерогенные.
38) Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
Влияние катализатора. Одно из наиболее эффективных средств воздействия на скорость химических реакций - использование катализаторов. Катализаторы - это вещества, которые изменяют скорость реакции, а сами к концу процесса остаются неизменными по составу и по массе. Иначе говоря, в момент самой реакции катализатор активно участвует в химическом процессе, но к концу реакции реагенты изменяют свой химический состав, превращаясь в продукты, а катализатор выделяется в первоначальном виде. Обычно роль катализатора заключается в увеличении скорости реакции, хотя некоторые катализаторы не ускоряют, а замедляют процесс. Явление ускорения химических реакций благодаря присутствию катализаторов носит название катализа, а замедления - ингибирования. Некоторые вещества не обладают каталитическим действием, но их добавки резко увеличивают каталитическую способность катализаторов. Такие вещества называются промоторами. Другие вещества (каталитические яды) уменьшают или даже полностью блокируют действие катализаторов, этот процесс называется отравлением катализатора. Существуют два вида катализа: гомогенный и гетерогенный. При гомогенном катализе реагенты, продукты и катализатор составляют одну фазу (газовую или жидкую). В этом случае отсутствует поверхность раздела между катализатором и реагентами. Особенность гетерогенного катализа состоит в том, что катализаторы (обычно твердые вещества) находятся в ином фазовом состоянии, чем реагенты и продукты реакции. Реакция развивается обычно на поверхности твердого тела. При гомогенном катализе происходит образование промежуточных продуктов между катализатором и реагирующим веществом в результате реакции с меньшим значением энергии активации. Гетерогенный катализ объясняется адсорбцией реагирующих веществ на поверхности катализатора. В результате этого их концентрация увеличивается, и скорость реакции растет.