- •1. Общие понятия теории рядов. Свойства рядов. Необходимы признак сходимости числового и функционального ряда
- •Комплексные числа.
- •Геометрическое изображение комплексных чисел.
- •Действия над комплексными числами.
- •6. Производная функций комплексных переменных. Условие Коши-Риммена.
- •Классическое определение вероятности.
- •Операции над событиями
- •Теоремы сложения и умножения вероятности, совместные и несовместные события, зависимые и независимые события.
- •2. Нормальный закон распределения.
- •2.1.Интегральная и дифференциальная функции распределения. Вероятность попадания в заданный интервал.
- •2.2. Вычисление вероятности заданного отклонения
- •2.3. Правило трех сигм
- •3. Показательное распределение.
- •3.1. Интегральная и дифференциальная функции распределения.
- •3.2. Числовые характеристики.
- •3.3. Функция надежности.
- •36. Распределение непрерывной двумерной случайной величины. Совместная плотность распределения и распределение компонент в отдельности.
- •37. Условие независимости и коррелированности случайных величин. Связь между этими понятиями.
- •38. Числовые характеристики двумерной случайной величины. Математическое ожидание компонент, дисперсия и ковариационный момент
- •39. Коэффициент ковариации случайных величин и её свойства
- •Закон больших чисел теоремы Чебышева, Бернули, Химчина
- •41. Основные задачи математической статистики. Выборка. Вариационный ряд.
- •Эмпирическая функция распределения и ее свойства
- •Точечные оценки параметров распределения, их свойства
- •Точечная оценка математического ожидания, ее свойства
- •Точечная оценка дисперсии, ее свойства
- •Интервальные оценки. Доверительные вероятности
- •Доверительный интервал для неизвестного математического ожидания нормально распределенной случайной величины при известной дисперсии
- •Доверительный интервал для неизвестного математического ожидания нормально распределенной случайной величины при неизвестной дисперсии
- •Стохастическая и корреляционная зависимость
- •Линейная корреляционная зависимость, уравнение линейной регрессии
1. Общие понятия теории рядов. Свойства рядов. Необходимы признак сходимости числового и функционального ряда
Раздел математики, позволяющий решить любую корректно поставленную задачу с достаточной для практического использования точностью, называется теорией рядов. Ряд может быть - числовым; знакопостоянным; знакопеременным; знакоположительным; знакочередующимся; функциональным; степенным; тригонометрическим.
Числовым рядом называется сумма вида
, (1.1)где , , ,…, ,…, называемые членами ряда, образуют бесконечную последовательность; член называется общим членом ряда. Суммы
…………..
,составленные из первых членов ряда (1.1), называются частичными суммами этого ряда. Каждому ряду можно сопоставить последовательность частичных сумм .Если при бесконечном возрастании номера n частичная сумма ряда стремится к пределу S, то ряд называется сходящимся, а число - суммой сходящегося ряда, т.е. и .Эта запись равносильна записи .Если частичная сумма ряда (1.1) при неограниченном возрастании n не имеет конечного предела (стремится к или ), то такой ряд называется расходящимся.
Разность называется остатком ряда. Если ряд сходится, то его остаток стремится к нулю, т.е. , и наоборот, если остаток стремится к нулю, то ряд сходится.
Простейшие свойства рядов
Теорема 1. Если члены сходящегося ряда, не меняя их порядка, объединить в конечные группы и составить ряд из сумм этих групп, то он будет сходиться и иметь сумму, равную сумме первоначального ряда. Иначе говоря, если a1 + a2 + a3 + ... = S и n1 < n2 < n3 < ..., то
Теорема 2. Если все члены сходящегося ряда умножить на одно и то же число, то вновь полученный ряд будет сходиться, и его сумма будет равна сумме первоначального ряда, умноженной на то же число. Иначе говоря, если a1 + a2 + a3 + ... = S, то ca1 + ca2 + ca3 + ... = cS.
Необходимый признак сходимости ряда.
Ряд может сходиться только при условии, что его общий член при неограниченном увеличении номера стремится к нулю: .
Ряд, членами которого являются функции от x, называется функциональным: .Придавая определенное значение , получим числовой ряд ,который может быть как сходящимся, так и расходящимся.
2. Ряд Фурье для периодической функции
3. Раложение периодической функции на интервале
4. Разложение периодической функции на интервале [-l; l]
5. Разложение чётной периодической ф-ии на интервале [0;π]
6. Разложение нечётной периодической ф-ии на интервале [0;π]
7. Разложение ф-ии в ряд по ф-иям ортогональной системы
8. Разложение ф-ии в ряд по sin на интервале [0;π]
9. разложение ф-ии в ряд по cos на интервале [0;π]
Представление ф-ий в виде интеграла Фурье
Понятие о преобразовании Фурье