Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan1.doc
Скачиваний:
3
Добавлен:
23.04.2019
Размер:
2.3 Mб
Скачать

Теоремы о пределах числовых последовательностей.

  1. Теорема о пределе суммы:

Пусть lim an=a lim bn=b  lim an+n=a+b

n+ n+ n+

Докозательство: an=a+n bn=b+n Сложим an+bn=a+b+n+n=a+b+n lim an+bn=a+b

n+

2) Теорема о произведение пределов:

Пусть lim an=a lim bn=b  lim anbn=ab

n+ n+ n+

Доказательство: an=a+n bn=b+n  anbn=(a+n)(b+n) anbn=ab+an+bn+nn=ab+n lim anbn=ab что и

n+

требовалось доказать.

  1. Теорема о пределе частного

Пусть lim an=a lim bn=b b0 lim an/bn=a/b

n+ n+ n+

Доказательство: an=a+n bn=b+n так как b0, то N1: n>N1bn0

bn

0 (////////b/////////) x

an/bn=an/bn-a/b+a/b=a/b+(ban-abn)/bbn=a/b+[b(a+n)-a(b+n)]/b(b+n)=a/b+n/b(1+bn/b)

lim an/bn=a/b

n+

Лекция №4

Ведущая: Голубева Зоя Николаевна

Дата: понедельник, 19 сентября 2000 г.

Тема: Бесконечно большие последовательности .

аn=(-1)n – не имеет предел.

{bn}={1,1…}

{an}={-1;1;-1;1…} – предел не существует.

Бесконечно большие последовательности.

an=2n

N:n>N  an

bn=(-1)n2n

N:n>N  bn>ε

cn=-2n

N:n>N cn<-ε

Определение (бесконечно большие последовательности)

1) lim an=+, если ε>0N:n>N  an>ε где ε- сколь угодно малое.

n

2)lim an=-, если ε>0 N:n>N  an<-ε

n+

3) lim an=  ε>0 N:n>N  an>ε

n+

Последовательностью имеющий конечный предел называют сходящимися. В противном случае последовательность называют расходящимися. Среди них есть последовательности, которые расходятся в бесконечность. О них мы говорим, что они имеют бесконечный предел.

Доказательство:

an=2n

Берём ε>0; хотим 2n

n>log2ε

N=[log2ε]+1

Правило формирования обратного утверждения: нужно поменять местами значки  и , а знак неравенства на дополнительный.

Пример:

Утверждение lim an=a< aR ε>0 NN:n>N  an-a<ε

n

Обратное утверждение aR ε>0 NN: n>N  an-a<ε

Всякая бесконечно большая не ограниченная. Обратное утверждение неверно.

bn{2;0;2n;0;23;0….}

Теорема (об ограниченной сходящейся последовательности)

Пусть lim an=a<  an - ограниченная

n+

Доказательство:

Дано:

ε>0N:n>N  an-a<ε

Раз ε>0 возьмем ε=1  N:n>N  an-a<1

a-1<an<1+a, n>N

Этому неравенству может быть не удовлетворять только первые N члены последовательности.

N1=max{a1;a2;…an;1+a;a-1}

anc, n>N

Теорема (о единстве предела сходящейся последовательности).

Если lim an=a <, то а- единственное.

n+

Доказательство:(от противного)

Предположим, что  b: lim an=b и ba ε=b-a/2>0 для определенности пусть b>a N1:n>N1 an-a<ε

n+

N2:n>N2  an-b<ε N=max{N1;N2}, тогда оба неравенства выполняются одновременно 

 -(b-a)/2<an-a<(b-a)/2

-(b-a)/2<an-b<(b-a)/2

an-a<(b-a)/2

-

an-b>-(b-a)/2

b-a<b-a

0<0 – противоречие  предположение, что b>a неверно. Аналогично доказывается, что b<a, то же неверно ε=(a-b)/2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]