
- •1. Сутність поняття “модель”. Особливості математичної моделі.
- •3. Особливості і принципи математичного моделювання. Узагальнена схема математичного моделювання.
- •4. Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів. Особливості процесу математичного моделювання економічних систем.
- •5. Особливості економічних спостережень і вимірів.
- •6. Охарактеризуйте основні етапи економіко-математичного моделювання.
- •7. Сутність адекватності економіко-математичних моделей. Перевірка адекватності моделі.
- •8. Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. «Павутиноподібна» модель. Гіпотези, що приймаються в моделі.
- •12. Стійка рівновага у «павутиноподібній» моделі. Умови існування стійкої рівноваги у «павутиноподібній» моделі.
- •13. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень», «оптимальний план».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем.
- •16. Классифікація задач математичного програмування.
- •17. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •18. Форми запису задачі лінійного програмування, охарактеризувати їх. Навести відповідні формули.
- •19. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування.
- •Перехід від одного опорного плану до іншого
- •21. Алгоритм графічного методу розв’язування задач лінійного програмування.
- •23. 24. Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули.
- •25. Метод штучного базису. Ознака оптимальності плану із штучним базисом.
- •26. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули.
- •27. Економічний зміст двоїстої задачі й двоїстих оцінок.
- •28. Теореми двоїстості, їх економічна інтерпретація.
- •29. Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули.
- •30. Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •31. Геометрична інтерпретація задачі цілочислового програмування.
- •32. Загальна характеристика методів розв’язування задач цілочислового програмування.
- •33. Сутність цілочислового програмування. Графічний метод розв’язування задач цілочислового програмування.
- •34. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •35. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •36. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •38. Основні труднощі розв’язування задач нелінійного програмування.
- •39. Графічний метод розв’язування задач нелінійного програмування.
- •40.41. Метод множників Лагранжа пошуку умовного екстремуму функції. Визначення типу екстремуму. Навести відповідні формули.
- •42. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •43. Поняття про опуклі функції
- •Опуклі й угнуті функції
- •44. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •45. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •46. Постановка зад.Динам.Прогр. Та її геометрична інтерпретація
- •47.Принцип оптимальності та алгоритм динамічного програмування.
- •50.Основні поняття та завдання теорії ігор.
- •52.Геом.Інтерпретація гри 2х2
- •54. Зведення матричної гри до задачі лінійного програмування.
7. Сутність адекватності економіко-математичних моделей. Перевірка адекватності моделі.
8. Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
Для класифікації економіко-математичних моделей використовують різні класифікаційні ознаки.
За цільовим призначенням економіко-математичні моделі поділяються на теоретико-аналітичні, що використовуються під час дослідження загальних властивостей і закономірностей економічних процесів, і прикладні, що застосовуються у розв’язанні конкретних економічних задач (моделі економічного аналізу, прогнозування, управління).
Відповідно до загальної класифікації математичних моделей вони поділяються на функціональні та структурні, а також проміжні форми (структурно-функціональні). Типовими структурними моделями є моделі міжгалузевих зв’язків. Прикладом функціональної моделі може слугувати модель поведінки споживачів в умовах товарно-грошових відносин.
Моделі поділяють на дескриптивні та нормативні. Прикладом дескриптивних моделей є виробничі функції та функції купівельного попиту, побудовані на підставі опрацювання статистичних даних. Типовим прикладом нормативних моделей є моделі оптимального (раціонального) планування, що формалізують у той чи інший спосіб цілі економічного розвитку, можливості і засоби їх досягнення.
За характером відображення причинно-наслідкових аспектів розрізняють моделі жорстко детерміновані і моделі, що враховують випадковість і невизначеність.
За способами відображення чинника часу економіко-математичні моделі поділяються на статичні й динамічні.
Моделі економічних процесів надзвичайно різноманітні за формою математичних залежностей. Важливо виокремити клас лінійних моделей, що набули значного поширення завдяки зручності їх використання. Відмінності між лінійними і нелінійними моделями є суттєвими не лише з математичного погляду, а й у теоретико-економічному плані, адже багато залежностей в економіці мають принципово нелінійний характер.
За співвідношенням екзогенних і ендогенних змінних, які включаються в модель, вони поділяються на відкриті і закриті. Повністю відкритих моделей не існує; модель повинна містити хоча б одну ендогенну змінну. Повністю закриті економіко-математичні моделі, тобто такі, що не містять екзогенних змінних, надзвичайно рідкісні. Переважна більшість економіко-математичних моделей посідає проміжну позицію і розрізняється за ступенем відкритості (закритості).
Класифікація видів математичних моделей може проводитися й за такими ознаками: аналітичне та комп’ютерне моделювання (рис.2.3).
Рисунок 1.3 –Аналітичне та комп’ютерне моделювання
Для аналітичного моделювання характерним є те, що процеси функціонування елементів системи записують у вигляді деяких математичних співвідношень (алгебраїчних, інтегро-диференційних, кінцево-різницевих тощо) чи логічних умов.
Комп’ютерне моделювання характеризується тим, що математична модель системи (використовуючи основні співвідношення аналітичного моделювання) подається у вигляді деякого алгоритму та програми, придатної для її реалізації на комп’ютері, що дає змогу проводити з нею обчислювальні експерименти. Залежно від математичного інструментарію (апарату), що використовується в побудові моделі, та способу організації обчислювальних експериментів можна виокремити три взаємопов’язані види моделювання: чисельне, алгоритмічне (імітаційне) та статистичне.
У чисельному моделюванні для побудови комп’ютерної моделі використовуються методи обчислювальної математики, а обчислювальний експеримент полягає в чисельному розв’язанні деяких математичних рівнянь за заданих значень параметрів і початкових умов.
Алгоритмічне (імітаційне) моделювання (може бути детермінованим та стохастичним) — це вид комп’ютерного моделювання, для якого характерним є відтворення на комп’ютері (імітація) процесу функціонування досліджуваної складної системи.
Статистичне моделювання — це вид комп’ютерного моделювання, який дозволяє отримати статистичні дані відносно процесів у модельованій системі.