
- •1. Сутність поняття “модель”. Особливості математичної моделі.
- •3. Особливості і принципи математичного моделювання. Узагальнена схема математичного моделювання.
- •4. Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів. Особливості процесу математичного моделювання економічних систем.
- •5. Особливості економічних спостережень і вимірів.
- •6. Охарактеризуйте основні етапи економіко-математичного моделювання.
- •7. Сутність адекватності економіко-математичних моделей. Перевірка адекватності моделі.
- •8. Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. «Павутиноподібна» модель. Гіпотези, що приймаються в моделі.
- •12. Стійка рівновага у «павутиноподібній» моделі. Умови існування стійкої рівноваги у «павутиноподібній» моделі.
- •13. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень», «оптимальний план».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем.
- •16. Классифікація задач математичного програмування.
- •17. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •18. Форми запису задачі лінійного програмування, охарактеризувати їх. Навести відповідні формули.
- •19. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування.
- •Перехід від одного опорного плану до іншого
- •21. Алгоритм графічного методу розв’язування задач лінійного програмування.
- •23. 24. Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули.
- •25. Метод штучного базису. Ознака оптимальності плану із штучним базисом.
- •26. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули.
- •27. Економічний зміст двоїстої задачі й двоїстих оцінок.
- •28. Теореми двоїстості, їх економічна інтерпретація.
- •29. Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули.
- •30. Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •31. Геометрична інтерпретація задачі цілочислового програмування.
- •32. Загальна характеристика методів розв’язування задач цілочислового програмування.
- •33. Сутність цілочислового програмування. Графічний метод розв’язування задач цілочислового програмування.
- •34. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •35. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •36. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •38. Основні труднощі розв’язування задач нелінійного програмування.
- •39. Графічний метод розв’язування задач нелінійного програмування.
- •40.41. Метод множників Лагранжа пошуку умовного екстремуму функції. Визначення типу екстремуму. Навести відповідні формули.
- •42. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •43. Поняття про опуклі функції
- •Опуклі й угнуті функції
- •44. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •45. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •46. Постановка зад.Динам.Прогр. Та її геометрична інтерпретація
- •47.Принцип оптимальності та алгоритм динамічного програмування.
- •50.Основні поняття та завдання теорії ігор.
- •52.Геом.Інтерпретація гри 2х2
- •54. Зведення матричної гри до задачі лінійного програмування.
45. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
Градієнтні методи належать до наближених методів розв’язування задач нелінійного програмування і дають лише певне наближення до екстремуму, причому за збільшення обсягу обчислень можна досягти результату з наперед заданою точністю, але в цьому разі є можливість знаходити лише локальні екстремуми цільової функції. Зауважимо, що такі методи можуть бути застосовані лише до тих типів задач нелінійного програмування, де цільова функція і обмеження є диференційовними хоча б один раз. Зрозуміло, що градієнтні методи дають змогу знаходити точки глобального екстремуму тільки для задач опуклого програмування, де локальний і глобальний екстремуми збігаються.
В основі градієнтних методів лежить основна властивість градієнта диференційовної функції – визначати напрям найшвидшого зростання цієї функції. Ідея методу полягає у переході від однієї точки до іншої в напрямку градієнта з деяким наперед заданим кроком.
Розглянемо метод Франка-Вульфа, процедура якого передбачає визначення оптимального плану задачі шляхом перебору розв’язків, які є допустимими планами задачі.
Нехай необхідно відшукати
за лінійних обмежень:
;
Допустимо, що Х0 – початкова точка, що належить множині допустимих планів даної задачі. В деякому околі цієї точки нелінійну цільову функцію замінюють лінійною і потім розв’язують задачу лінійного програмування. Нехай розв’язок лінійної задачі дав значення цільової функції F0, тоді з точки Х0 в напрямку F0 необхідно рухатись доти, поки не припиниться зростання цільової функції. Тобто у зазначеному напрямку вибирають наступну точку Х1, цільова функція знову замінюється на лінійну, і знову розв’язується задача лінійного програмування.
Розглянемо детальніше перехід від k-ої ітерації методу до (k + 1)-ої ітерації.
Припустимо, що відома точка Xk, яка належить області допустимих розв’язків. У даній точці обчислюємо градієнт цільової функції:
.
Значення градієнта функції задає в даній точці напрям найшвидшого її зростання.
Замінюємо цільову функцію задачі лінійною функцією виду:
.
Потім розв’язуємо задачу лінійного програмування з обмеженнями початкової задачі і новою цільовою функцією:
за умов:
;
.
Нехай розв’язком
такої задачі є точка
.
З початкової точки
в напрямку
рухаємося з деяким довільним кроком
,
визначаючи координати нової точки
у такий спосіб:
Зауважимо, що
значення параметра
доцільно вибирати таким, що дає найбільше
значення цільової функції початкової
задачі
.
Для точки Хk+1 повторюємо розглянутий процес, для чого знову розраховуємо значення градієнта і т. д.
У такий спосіб
знаходимо послідовність точок
,
які поступово наближаються до оптимального
плану початкової задачі. Ітераційний
процес повторюється до того моменту,
поки значення градієнта цільової функції
не стане рівним нулю або виконуватиметься
умова
,
де
– досить мале число, яке
означає потрібну точність обчислень.